Year in Space Starts for One American and One Russian

Year in Space Starts for One American and One Russian

Soyuz TMA-16M launch
The Soyuz TMA-16M spacecraft is seen as it launches to the International Space Station with Expedition 43's NASA Astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) onboard Friday, March 27 (Saturday, March 28 Kazakh time) from the Baikonur Cosmodrome in Kazakhstan.
Image Credit: NASA/Bill Ingalls
 
Three crew members representing the United States and Russia are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m. EDT Friday (1:42 a.m., March 28 in Baikonur).

NASA astronaut Scott Kelly and Russian Federal Space Agency (Roscosmos) cosmonaut Mikhail Kornienko will spend about a year living and working aboard the space station to help scientists better understand how the human body reacts and adapts to the harsh environment of space.

NASA astronaut Scott Kelly
NASA astronaut Scott Kelly gives a thumbs-up from inside the Soyuz TMA-16M taking him and Expedition 43 crewmates Mikhail Kornienko, and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) to the International Space Station after a successful launch from the Baikonur Cosmodrome in Kazakhstan.
Image Credit: NASA
 
“Scott Kelly’s mission is critical to advancing the administration’s plan to send humans on a journey to Mars,” said NASA Administrator Charles Bolden. “We’ll gain new, detailed insights on the ways long-duration spaceflight affects the human body.”
Launching with Kelly and Kornienko was cosmonaut Gennady Padalka, who will spend a standard six-month rotation on the station. The trio is scheduled to dock with the station at 9:36 p.m., about six hours after launch. NASA Television coverage of docking will begin at 8:45 p.m. Hatches are scheduled to open at about 11:15 p.m., with coverage starting at 10:45 p.m

The crew of ISS Expedition 43
Expedition 43 crew members Mikhail Kornienko of the Russian Federal Space Agency (Roscosmos), top, NASA astronaut Scott Kelly, center, and Gennady Padalka of Roscosmos wave farewell as they board the Soyuz TMA-16M spacecraft ahead of their launch to the International Space Station.
Image Credit: NASA/Bill Ingalls
 
The arrival of Kelly, Kornienko and Padalka returns the station's crew complement to six. The three will join Expedition 43 commander Terry Virts of NASA, as well as flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November.

Virts, Cristoforetti and Shkaplerov will return home in May. At that time, Padalka will take command of Expedition 44, becoming the first person to command four station crews. Padalka will return in September, while Kelly and Kornienko will remain aboard until March 2016.

The one-year mission will focus on seven key areas of human research. Functional studies will examine crew member performance during and after the 12-month expedition. Behavioral studies will monitor sleep patterns and exercise routines. Visual impairment will be studied by measuring changes in pressure inside the human skull. Metabolic investigations will examine the immune system and effects of stress.
Physical performance will be monitored through exercise examinations. Microbial changes in the crew will be monitored, as well as the human factors associated with how the crew interacts aboard the station. Each of these key elements carries a potential benefit for populations here on Earth, from functional improvements for patients recovering from a long period of bed rest to improving the monitoring of immune functions of people on Earth with altered immunity.

Data from Kelly and Kornienko’s 342-day expedition will be used to determine whether there are ways to further reduce the risks on future long-duration missions necessary for deep space missions.
In tandem with the one-year mission, Kelly’s identical twin brother, former NASA astronaut Mark Kelly, will participate in a number of comparative genetic studies, including the collection of blood samples as well as psychological and physical tests. This research will compare data from the genetically identical Kelly brothers to identify any subtle changes caused by spaceflight.

The tests will track any degeneration or evolution that occurs in the human body from extended exposure to a microgravity environment. These new twin studies are a multi-faceted national cooperation between universities, corporations and government laboratory expertise.

Expedition 43 will perform scientific research in several other fields, such as astrophysics and biotechnology. Among the planned experiments are a study of meteors entering Earth’s atmosphere and testing of a new synthetic material that can expand and contract like human muscle tissue. The crew members also are scheduled to greet a host of cargo spacecraft during their mission, including the sixth SpaceX commercial resupply flight and a Russian Progress resupply mission. Each flight will carry several tons of food, fuel, supplies and research. No spacewalks are planned during Expedition 43.

The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs that are not possible on Earth. The space station has been continuously occupied since November 2000. In this time, it has received more than 200 visitors and a variety of international and commercial spacecraft. The space station remains the springboard to NASA's next giant leap in exploration.

For NASA TV streaming video, downlink and scheduling information, visit:

For more information about this mission to the space station, visit:

For more information about the research on this mission, visit:
 
To follow activities on orbit, visit the space station Facebook page at:

Follow the crew members and the station on Twitter at:

and

 
Follow Kelly and the station on Instagram at:

and

Suzaku, Herschel Link a Black-hole 'Wind' to a Galactic Gush of Star-forming Gas

Suzaku, Herschel Link a Black-hole 'Wind' to a Galactic Gush of Star-forming Gas

By combining observations from the Japan-led Suzaku X-ray satellite and the European Space Agency's infrared Herschel Space Observatory, scientists have connected a fierce "wind" produced near a galaxy's monster black hole to an outward torrent of cold gas a thousand light-years across. The finding validates a long-suspected feedback mechanism enabling a supermassive black hole to influence the evolution of its host galaxy.
"This is the first study directly connecting a galaxy's actively 'feeding' black hole to features found at much larger physical scales," said lead researcher Francesco Tombesi, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, College Park (UMCP). "We detect the wind arising from the luminous disk of gas very close to the black hole, and we show that it's responsible for blowing star-forming gas out of the galaxy's central regions."
artist's rendering of a galaxy being cleared of interstellar gas
This artist's rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole's accretion disk (inset) that ultimately drives such outflows.
Image Credit: 
ESA/ATG Medialab
 
Star formation takes place in cold, dense molecular clouds. By heating and dispersing gas that could one day make stars, the black-hole wind forever alters a large portion of its galaxy. 

In a study published in the March 26 edition of Nature, Tombesi and his team report the connection in a galaxy known as IRAS F11119+3257, or F11119 for short. The galaxy is so distant, its light has been traveling to us for 2.3 billion years, or about half the present age of our solar system.

Like most galaxies, including our own Milky Way, F11119 hosts a supersized black hole, one estimated at 16 million times the sun's mass. The black hole's activity is fueled by a rotating collection of gas called an accretion disk, which is some hundreds of times the size of our planetary system. Closest to the black hole, the orbiting matter reaches temperatures of millions of degrees and is largely responsible for the galaxy's enormous energy output, which exceeds the sun's by more than a trillion times. The galaxy is heavily enshrouded by dust, so most of this emission reaches us in the form of infrared light.
red-filter image of IRAS F11119+3257, inset over wider view of the region
A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii's 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey.
Image Credit: 
NASA's Goddard Space Flight Center/SDSS/S. Veilleux
The new findings resolve a long-standing puzzle. Galaxies show a correlation between the mass of their central black holes and stellar properties across a much larger region called the galactic bulge. Galaxies with more massive black holes usually possess bulges with proportionately greater stellar mass and faster-moving stars.

Black holes grow the same way their host galaxies do, by colliding and merging with their neighbors. But mergers disrupt galaxies, which leads to greatly enhanced star formation and sends a flood of gas toward the merged black hole. The process should scramble any simple relationship between the black hole's growth and the galaxy's evolution, yet it doesn't.  

"These connections suggested the black hole was providing some form of feedback that modulated star formation in the wider galaxy, but it was difficult to see how," said team member Sylvain Veilleux, an astronomy professor at UMCP. "With the discovery of powerful molecular outflows of cold gas in galaxies with active black holes, we began to uncover the connection."

In 2013, Veilleux led a search for these outflows in a sample of active galaxies using the Herschel Space Observatory. In F11119, the researchers identified a strong outflow of hydroxyl molecules moving at about 2 million mph (3 million kph). Other studies using different trace molecules found similar flows.
In the present study, Tombesi, Veilleux and their colleagues estimate that this outflow operates up to 1,000 light-years from the galaxy's center and calculate that it removes enough gas to make 800 copies of our sun.
In May 2013, the team observed F11119 using Suzaku's X-ray Imaging Spectrometer, obtaining an effective exposure of nearly three days. The galaxy's spectrum indicates that X-ray-absorbing gas is racing outward from the innermost accretion disk at 170 million mph (270 million kph), or about a quarter the speed of light. The region is possibly half a billion miles (800 million km) from the brink of the black hole, and about as close to the point where not even light can escape as Jupiter is from the sun.
"The black hole is ingesting gas as fast as it can and is tremendously heating the accretion disk, allowing it to produce about 80 percent of the energy this galaxy emits," said co-author Marcio Meléndez, a research associate at UMCP. "But the disk is so luminous some of the gas accelerates away from it, creating the X-ray wind we observe."

Taken together, the disk wind and the molecular outflow complete the picture of black-hole feedback. The black-hole wind sets cold gas and dust into motion, giving rise to the molecular outflow. It also heats dust enshrouding the galaxy, leading to the formation of an outward-moving shock wave that sweeps away additional gas and dust.

When the black hole shines at its brightest, the researchers say, it's also effectively pushing away the dinner plate, clearing gas and dust from the galaxy's central regions and shutting down star formation there. Once the dust has been cleared out, shorter-wavelength light from the disk can escape more easily.
Scientists think ultra-luminous infrared galaxies like F11119 represent an early phase in the evolution of quasars, a type of black-hole-powered galaxy with extreme luminosity across a broad wavelength range. According to this picture, the black hole will eventually consume its surrounding gas and gradually end its spectacular activity. As it does so, it will evolve from a quasar to a gas-poor galaxy with a relatively low level of star formation.

The researchers hope to detect and study this process in other galaxies and look forward to the improved sensitivity of Suzaku's successor, ASTRO-H. Expected to launch in 2016, ASTRO-H is being developed at the Institute of Space and Astronautical Science of the Japan Aerospace Exploration Agency (ISAS/JAXA), in collaboration with NASA Goddard and Japanese institutions.
Beautiful Barred NGC 6217

Beautiful Barred NGC 6217

Beautiful Barred NGC 6217

15-096

This incredible image of barred spiral galaxy NGC 6217 was the first image by the Hubble space telescope after completion of STS-125 Atlantis’s Hubble Servicing Mission 4 (HSM4). This galaxy at 44,000 light years is less than half the diameter of the Milky Way and resides 60 million years into the past.
This structure is very much alive in star formation as seen in the pink regions where stars are coming to life all throughout the two major arms. Those arms are also alive with young bright blue stars creating an amazing color contrast from proverbial head to toe. At the nucleus the telltale sign of yellow ancient stars glows showing traces of gas and dust lanes. It’s this nucleus as with almost all galaxies to include our neighbor, the Andromeda galaxy is all that we see in binoculars and in telescopes. It’s typically tough to see spiral arm features in small to medium sized telescopes unless you have very dark locations.

NAME: NGC 6217.
WHAT IS IT?: Barred Spiral Galaxy.
HOW BIG IS IT?: 44,000 light years in diameter.
HOW FAR AWAY IS IT?: 60 million light years.
APPARENT MAGNITUDE: 11.2.
WHERE IS IT? (General): Constellation Ursa Minor and the asterism of the Little Dipper.
WHERE IS IT? (Exact RA/DEC J2000): RA 16h 32m 39s.2 / DEC +78° 11′ 53″.

NASA Hubblesite News Center page for this image: http://hubblesite.org/newscenter/archive/releases/2009/25/image/bc/

Image Credit & Copyright: NASA/ESA Hubble Space Telescope.