Spitzer Space Telescope Discovers Distant Exoplanet Across the Milky Way

Spitzer Space Telescope Discovers Distant Exoplanet Across the Milky Way

Spitzer Space Telescope Discovers Distant Exoplanet Across the Milky Way

Utilising NASA's Spitzer Space Telescope, astronomers have discovered a distant exoplanet located 13,000 light-years away, through gravitational microlensing. The red cone in the map above our Solar System, depicts the extend in the galaxy of the thousands of known exoplanets that have been discovered by NASA's Kepler space telescope, while the red circle represents the extend of all the exoplanets that have been detected so far by ground-based telescopes. The white dots show the positions of exoplanets that have been discovered through the gravitational microlensing technique. Image Credit: NASA/JPL-Caltech
Utilising NASA’s Spitzer Space Telescope, astronomers have discovered a distant exoplanet located 13,000 light-years away, through gravitational microlensing. The red cone in the map above our Solar System, depicts the extend in the galaxy of the thousands of known exoplanets that have been discovered by NASA’s Kepler space telescope, while the red circle represents the extend of all the exoplanets that have been detected so far by ground-based telescopes. The white dots show the positions of exoplanets that have been discovered through the gravitational microlensing technique. Image Credit: NASA/JPL-Caltech

In the fictional Universe of Star Trek: Voyager, the crew of a Federation starship comes in contact with the denizens of planetary systems many thousands of light-years away from Earth, while being stranded on the far side of the galaxy. In an example of life imitating art, astronomers have been able to discover dozens of exoplanets across the Milky Way in recent years, through the use of gravitational microlensing. A research team has recently added one more member to the list, by announcing the detection of an exoplanet at a distance of approximately 13,000 light-years away, which was spotted by NASA’s Spitzer space telescope in conjunction with a ground-based deep-sky survey.


As described in a previous AmericaSpace article, gravitational lensing is an effect of the curvature of space-time by gravity that was first described by Einstein’s theory of General Relativity in the early 20th century and can be described as the phenomenon of the bending of light of distant, faraway cosmic sources (like quasars and other distant galaxies) from the gravity of massive objects (like galaxy clusters) that lie in between. The gravity of these intermediate objects bends and refocuses the light of the more distant sources, acting like a lens which brightens and magnifies the latter, thus allowing us to observe distant parts of the Universe that would otherwise be beyond our view. Gravitational microlensing on the other hand, results from the bending of light from much smaller and less massive stellar-type objects like brown dwarfs, red dwarfs, neutron stars and black holes. Because the mass and size of the latter is many orders of magnitude smaller compared to that of galaxies, they brighten the light of passing background objects significantly less, making them much more challenging for astronomers to detect.

The 1.3-m Warsaw University Telescope used by the OGLE survey. Image Credit: OGLE
The 1.3-m Warsaw University Telescope used by the OGLE survey. Image Credit: OGLE

Despite these observational challenges, astronomers have nevertheless successfully spotted many thousands of such microlensing events as part of various comprehensive deep-sky surveys during the last couple of decades which have monitored hundreds of millions of stars for many years at a time, like the MACHO Collaboration project, the Microlensing Observations in Astrophysics, or MOA, and the Optical Gravitational Lensing Experiment, or OGLE. These have provided great advances to many important areas of astrophysical research, like the study for the nature of dark matter in the halos of the Milky Way and its neighboring galaxies, the characterisation of thousands of variable stars, and the search for exoplanets.
Contrary to the radial velocity and transit methods which are more widely used for exoplanet discovery, gravitational microlensing can only be used when the light from a distant, background star is magnified by the gravitational field of a closer, foreground star that happens to pass in front, as seen by our line of sight here on Earth. In the case of two stars without planets, the background star’s brightness will increase as the foreground star passes in front of it and then decrease as the latter moves away, in a predictable way during a period of days or weeks, producing a well-defined light curve. If the foreground star happens to have any planets orbiting it, these will distort and dim the light from the background star in a noticeable way as well, which will help astronomers measure some of their basic properties, like their mass and orbital period. And since both stars must be exactly aligned for this method to work, such exoplanet microlensing events are extremely rare. Nevertheless, astronomers have been able to detect dozens of microlensing exoplanets, proving that this is a viable and important method for the discovery and characterisation of other planetary systems in the galaxy. The OGLE survey, which utilises the 1.3-m Warsaw University Telescope located at the Las Campanas Observatory in Chile, has been at the forefront of this research, by discovering among other things the most distant known exoplanet to date in the Milky Way, located at a distance of more than 22,000 light-years very near the galactic center, while also detecting a candidate planet-like object inside our neighboring Andromeda galaxy, which if confirmed, would be the first discovery ever of a planet outside of our galaxy.

Infographic explaining how the Spitzer Space Telescope can be used in tandem with a ground-based telescope, in order to measure the distances to exoplanets discovered using gravitational microlensing. Image Credit: NASA/JPL-Caltech/Warsaw University University
Infographic explaining how the Spitzer Space Telescope can be used in tandem with a ground-based telescope, in order to measure the distances to exoplanets discovered using gravitational microlensing. Image Credit: NASA/JPL-Caltech/Warsaw University University

Now, an international team of astronomers led by Jennifer Yee from the Harvard-Smithsonian Center for Astrophysics and Andrzej Udalski from the Warsaw University Astronomical Observatory, has announced the discovery of an extrasolar world at a distance of 13,000 away towards the direction of the Milky Way’s center, while utilising OGLE simultaneously with NASA’s Spitzer Space Telescope. More specifically, the researchers sought out to determine whether NASA’s infrared orbiting observatory could be used to make space-based parallax measurements of microlensing events soon after they had been recorded from ground-based telescopes. Parallax is a standard method in astronomy for measuring the distance of nearby stars. By observing the shift in the relative positions of stars in the sky relative to Earth as the latter moves in its orbit around the Sun, astronomers can triangulate their distance with great accuracy.

Similarly, Yee’s team used Spitzer throughout the summer of 2014 for an 100-hour pilot observing program, during which they studied a microlensing event of interest that had been previously detected by the OGLE survey in February. By taking advantage of Spizer’s large distance from the Earth, the researchers were able to observe the light curve of the event from the vantage point of the orbiting telescope and study its variations with time in order to check them against similar observations that were conducted at the same time with the OGLE telescope on Earth. Through this process, the astronomers eventually were able to determine that the event was caused by the magnifying of a single star’s light due to the foreground passage of an orbiting planet-type object with a mass of approximately 0.5 times that of Jupiter. Consequently, these observations of the same microlensing event from two different largely separated vantage points allowed Yee’s team to triangulate the distance of the newly discovered planet, named OGLE-2014-BLG-0939L, determining that it was approximately 13,000 light-years away towards the direction of the Milky Way’s central bulge, while the star-planet separation was estimated to be about 3.1 AU.

This plot shows the light curve of  OGLE-2014-BLG-0124L, obtained from NASA's Spitzer Space Telescope and the OGLE survey, during the summer of 2014. The finding was the result of fortuitous timing because Spitzer's overall program to observe microlensing events was only just starting up in the week before the planet's effects were visible from Spitzers vantage point. Image Credit: NASA/JPL-Caltech/Warsaw University University
This plot shows the light curve of OGLE-2014-BLG-0124L, obtained from NASA’s Spitzer Space Telescope and the OGLE survey, during the summer of 2014. The finding was the result of fortuitous timing because Spitzer’s overall program to observe microlensing events was only just starting up in the week before the planet’s effects were visible from Spitzers vantage point. Image Credit: NASA/JPL-Caltech/Warsaw University University

One significant aspect of this discovery is the fact that it’s the first of its kind to be made by an orbiting space telescope. “Spitzer is the first space telescope to make a microlens parallax measurement for a planet,” says Yee. “Traditional parallax techniques that employ ground-based telescopes are not as effective at such great distances.” Furthermore, gravitational microlensing can complement other exoplanet detection techniques like radial velocity and the transit method, which are limited in discovering mostly massive planets in relatively close orbits around their host stars. In addition, the bulk of the thousands of exoplanets that have been discovered to date, have been found within a radius of a few thousand light-years from Earth. Gravitational microlensing opens up the possibility of mapping the vast expanses of the entirety of the Milky Way to really study the distribution of planets across the galaxy and discover planet-type objects that can’t be detected with any of the other planet-hunting methods that are currently being used. “There are several major benefits to such a study,” write’s Yee’s team in its study which appeared in the April 1 issue of The Astrophysical Journal. “First, it is the only way to obtain a mass-based census of stellar, remnant, and planetary populations. Several components of this population are dark or essentially dark including free-floating planets, brown dwarfs, neutron stars, and black holes and therefore are essentially undetectable by any other method unless they are orbiting other objects. In addition, even the luminous-star mass function of distant populations (e.g., in the Galactic Bulge) is substantially more difficult to study photometrically than is generally imagined. For example, a large fraction of stars are fainter components in binary systems, with separations that are too small to be separately resolved, but whose periods are too long (or primaries too faint) for study by the radial velocity technique.” “We’ve mainly explored our own solar neighborhood so far,” adds Sebastiano Calchi Novati, a Visiting Sagan Fellow at NASA’s Exoplanet Science Institute at the California Institute of Technology in Pasadena Calif, and co-author of the study. “Now we can use these single lenses to do statistics on planets as a whole and learn about their distribution in the galaxy.”

The proposed WFIRST-AFTA mission will greatly complement any present and future planet-hunting missions, by allowing astronomers to map the distribution of exoplanets throughout the galaxy. Image Credit: NASA/WFIRST/Matthew Penny (Ohio State University)
The proposed WFIRST-AFTA mission will greatly complement any present and future planet-hunting missions, by allowing astronomers to map the distribution of exoplanets throughout the galaxy. Image Credit: NASA/WFIRST/Matthew Penny (Ohio State University)

Bearing that in mind, the latest Astronomy and Astrophysics Decadal Survey by the National Research Council in 2010, acknowledged the proposed Discovery-class Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets mission, or WFIRST-AFTA for short, as a top priority for the 2020’s. One of the main science objectives of WFIRST-AFTA mission proposal, which calls for using one of the two 2.4-m telescopes that were donated to NASA by the National Reconnaissance Office in 2012, is to provide a complete census of exoplanets throughout the galaxy through the use of gravitational microlensing. “WFIRST addresses fundamental and pressing scientific questions and will contribute to a broad range of astrophysics”, wrote the NRC’s Astro2010 Decadal Survey. “It complements the committee’s proposed ground-based program in two key science areas: dark energy science and the study of exoplanets.” If WFIRST-AFTA gets the final go-ahead by NASA for implementation, it could open up a new chapter in exoplanet research as a follow-up to the science results by ESA’s Gaia space observatory which has already began its primary 5-year mission, as well as the James Webb Space Telescope which is scheduled for launch in 2018.

“We don’t know if planets are more common in our galaxy’s central bulge or the disk of the galaxy, which is why these observations are so important,” says Yee. Provided that NASA goes forward with the WFIRST-AFTA mission proposal and the space agency receives the funding necessary for the next round of Discovery-class missions, the 2020’s will truly constitute a new golden era in exoplanetary research, bearing discoveries that are unimaginable today.
'Like a Game of Solitaire': 45 Years Since the Lost Moonwalks of Apollo 13

'Like a Game of Solitaire': 45 Years Since the Lost Moonwalks of Apollo 13

'Like a Game of Solitaire': 45 Years Since the Lost Moonwalks of Apollo 13

Artist's concept of Apollo 13 astronauts Jim Lovell and Fred Haise exploring Fra Mauro. The Lunar Module (LM) Aquarius is visible in the background. Image Credit: Teledyne Brown
Artist’s concept of Apollo 13 astronauts Jim Lovell and Fred Haise exploring Fra Mauro. The Lunar Module (LM) Aquarius is visible in the background. Image Credit: Teledyne Brown

Had the cruelty of fate not intervened, 45 years ago, today—on 16 April 1970—the fifth and sixth humans ever to set foot on another world would twice have walked on the dusty surface of the Moon. Following their launch aboard Apollo 13, and a four-day voyage across 240,000 miles (370,000 km) of cislunar space, Apollo 13 astronauts Jim Lovell and Fred Haise would have boarded the Lunar Module (LM) Aquarius and accomplished humanity’s third piloted landing on our closest celestial neighbor. If near-disaster had not radically altered their mission, Lovell and Haise would have performed two EVAs at a place called Fra Mauro, becoming the first Apollo astronauts to explore a hilly upland lunar site. “It was driven by confidence in the LM capability and steerage,” Haise told the NASA Oral History Project of the site selection, years later, “but also, if you’re going to properly sample the Moon … you had to become more diverse in … where you went to get a proper sampling.”
And Fra Mauro was nothing if not diverse.


The site was named in honor of the 15th-century Venetian cartographer-monk Fra Mauro, who created one of the earliest (and relatively accurate) maps of the Old World. His lunar namesake differed markedly from the relatively flat, open plains (or mare) explored by the Apollo 11 and Apollo 12 astronauts and was considerably more rugged, resembling a low “island” in the Moon’s Ocean of Storms. In the late 1960s, many geologists suspected that the lunar highlands had remained virtually unchanged, geochemically and morphologically, since the Moon formed, around 4.5 billion years ago. By exploring into the older and more heavily cratered lunar highlands, it was hoped that Lovell and Haise would identify some of the oldest rocks on the surface.

Fra Mauro had been extensively photographed from lunar orbit by the Apollo 12 crew in November 1969, and samples returned from the Sea of Tranquility and the Ocean of Storms differed markedly in composition from “ordinary” mare materials, to such an extent that they were believed to have been violently ejected over long distances by vast impacts in the lunar highlands. One obvious example of such an impact was the object which created the 750-mile-wide (1,200 km) Imbrium basin, whose southern rim lay 300 miles (480 km) to the north of Apollo 13’s selected landing site at Fra Mauro. In fact, much of Fra Mauro was thought to be composed of ejecta from this ancient cataclysm. By sampling these foothills, Lovell and Haise might shed significant new light on the composition of the pre-Imbrium lunar crust and help to establish an absolute date for when the impact took place.

The hummocky terrain of the Fra Mauro Formation, and the slopes of Cone Crater, were the original destination of Jim Lovell and Fred Haise. The site was later visited by Apollo 14's Al Shepard and Ed Mitchell. Photo Credit: NASA
The hummocky terrain of the Fra Mauro Formation, and the slopes of Cone Crater, were the original destination of Jim Lovell and Fred Haise. The site was later visited by Apollo 14’s Al Shepard and Ed Mitchell. Photo Credit: NASA

Of central importance in the so-called Fra Mauro Formation was Cone Crater, a yawning bowl, spanning 1,000 feet (300 meters), whose impact was believed to have dug deeply into a ridge of Imbrium ejecta. Imagery from NASA’s unmanned Lunar Orbiters had shown its rim to be littered with boulders drawn from deep within the blanket of Imbrium material, and Cone was one of Apollo 13’s key sampling locations. “By strategically sampling up toward the crater, you would be sampling material that at the…outside ray of the crater would be the deepest material,” Haise explained to the NASA Oral History Project. “If it’s due to an impact facet, it ‘inverts’—it’s an inverted flap—so if you’re sampling up a ray, the farther-out stuff is the deepest stuff within the crater. And as you get up near the edge of the crater, you’re sampling literally at the surface.”

Reaching Fra Mauro and Cone Crater involved a novel propellant-conservation plan. Previous Apollo missions had entered near-circular orbits at an altitude of about 70 miles (110 km), after which the LM undocked from the Command and Service Module (CSM) to commence its Powered Descent to the surface. However, on Apollo 13, the spacecraft would enter an elliptical orbit, with a high point of 70 miles (110 km) and a low point of only 9.3 miles (15 km). The result was that LM Aquarius would be effectively relieved of the need to perform a Descent Orbit Insertion (DOI) maneuver, thereby providing Lovell with an extra 15 seconds of hovering time in order to select an appropriate landing spot. During his approach, he would clear the 1,000-feet-wide (300-meter) ridge, into which Cone was embedded, and find a safe patch, somewhere between two groups of craters, nicknamed “Doublet” and “Triplet.”

Had the crippling explosion in one of two oxygen tanks aboard Apollo 13 on the evening of 13 April 1970 not occurred, and had the mission proceeded as intended, the crew would have entered lunar orbit at 7:38 p.m. EDT on 14 April, about 77.5 hours after launch. Almost a full day later, at 5:29 p.m. EDT on the 15th, during Apollo 13’s 12th orbit of the Moon, Lovell and Haise would have undocked LM Aquarius from CSM Odyssey, leaving crewmate Jack Swigert alone in orbit. “A radially-downward Service Module Reaction Control System (RCS) burn of 1 fps (0.3 meters/sec),” it was noted in the Apollo 13 Press Kit, “will place the CSM on an equiperiod orbit with a maximum separation of 2.5 nautical miles (4.6 km).” About an hour later, Swigert would have executed a Circularization Burn to establish Odyssey into an orbit of 52 x 62 nautical miles (96.3 km x 114.8 km). Due to perturbations of the lunar gravitational potential, this orbit was expected to virtually circularize by the time of rendezvous with Aquarius’ returning ascent stage, almost two days hence.

The desolation of the Fra Mauro site, as captured by one of the Apollo 14 astronauts. Photo Credit: NASA
The desolation of the Fra Mauro site, as captured by one of the Apollo 14 astronauts. Photo Credit: NASA

In the meantime, Lovell and Haise would have commenced their Powered Descent during the 14th orbit, braking the LM out of the descent orbit by means of the Descent Engine. “Spacecraft attitude will be windows-up from the Powered Descent Initiation to the end of the braking phase,” it was explained, “so that the LM landing radar data can be integrated continually by the LM guidance computer and better communications can be maintained.” About 7,400 feet (2,250 meters) above the Moon, the braking phase would end and Aquarius would be rotated toward an “upright,” windows-forward, attitude, thereby permitting the crew a view of the landing site. Progressing through the upper (“High Gate”) and lower (“Low Gate”) stages of the approach, Aquarius would initiate a final vertical descent at an altitude of about 100 feet (30 meters), by which point all forward velocity would have been nulled out. According to the Apollo 13 Press Kit, touchdown at Fra Mauro was intended to occur at 9:55 p.m. EDT on 15 April, about 103 hours and 42 minutes after departing Earth. The predicted landing spot was situated 30 miles (48 km) north of the Fra Mauro crater.

Like their immediate predecessors, Apollo 12 astronauts Charles “Pete” Conrad and Al Bean, it was expected that Lovell and Haise would remain on the surface for 33.5 hours and supported a pair of EVAs, each baselined at four hours, although each carried an optional extension to five hours, “if the physical conditions of the astronauts and amount of remaining consumables permit.” Plans for a “rest” period in the immediate aftermath of landing had long since been abandoned, and it was anticipated that Lovell and Haise would be suited up and ready to begin the first of their two EVAs at 2:13 a.m. EDT on 16 April, 45 years ago today.

The first EVA would have been very similar to that of Apollo 12, with Lovell departing Aquarius first and being joined shortly afterwards by Haise. The duo would set up an erectable S-band antenna, about 50 feet (15 meters) from Aquarius, for relaying voice, television, and LM telemetry data to Earth-based stations. “After the antenna is deployed, Haise will climb back into the LM to switch from the LM steerable S-band antenna to the erectable antenna, while Lovell makes final adjustments to the antenna’s alignment,” it was noted by NASA. “Haise will then rejoin Lovell on the lunar surface to set up a United States flag and continue with EVA tasks.”

Jim Lovell and Fred Haise participate in lunar surface training in February 1970. Their target was the Moon's Fra Mauro foothills. Photo Credit: NASA
Jim Lovell and Fred Haise participate in lunar surface training in February 1970. Their target was the Moon’s Fra Mauro foothills. Photo Credit: NASA

Core objectives would have encompassed the collection of a “contingency” sample of about 2 pounds (900 grams) of lunar soil, the unveiling of a commemorative plaque on Aquarius’ leg and the deployment of the second Apollo Lunar Surface Experiments Package (ALSEP). The latter, situated about 500 feet (150 meters) from the LM, would have supported five discrete investigations: the instrumented probes of the Heat Flow Experiment (HFE), the Dust Detector, the Charged Particle Lunar Environment Experiment (CPLEE), the Cold Cathode Gauge Ion Instrument of the Lunar Atmosphere Detector (LAD), and the Passive Seismic Experiment (PSE). “These experiments are aimed toward determining the structure and state of the lunar interior, the composition and structure of the lunar surface and processes which modify the lunar surface, and evolutionary sequence leading to the Moon’s present characteristics,” NASA explained. “The Passive Seismic Experiment will become the second point in a lunar seismic ‘net’, begun with the first ALSEP at the Surveyor III landing site of Apollo 12. The two seismometers must continue to operate until the next seismometer is emplaced to complete the three-station set.”

In particular, the HFE would have required Haise to drill a pair of 10-foot-deep (3.3-meter) holes with the Apollo Lunar Surface Drill (ALSD). Meanwhile, Lovell would have busied himself with the assembly of the ALSEP Central Station. The pair would then have headed about a half-mile (800 meters) to the west to begin their first period of scientific exploration, venturing as far as the rim of Star Crater. They would have returned to the LM in a looping elllipse, by way of the Doublet crater group, and Haise would have deployed the Solar Wind Composition Experiment (SWCE). This would have concluded a maximum EVA-1 traverse of 5,000 feet (1,150 meters).

Lovell and Haise’s time outside would be tightly constrained, and the clock would forever work against them. “While on the surface, the crew’s operating radius will be limited by the range provided by the Oxygen Purge System (OPS), the reserve backup for each man’s Portable Life Support System (PLSS) backpack,” it was highlighted. “The OPS supplies 45 minutes of emergency breathing oxygen and suit pressure.” Unlike the crews of the two previous Apollo landing missions, Lovell and Haise’s snow-white suits would have been easily distinguishable, for the Commander’s ensemble was emblazoned for the first time with red stripes around its elbows and knees for identification. “Another modification since Apollo 12 has been the addition of 8-ounce (225-gram) drinking water bags, attached to the inside neck rings of the EVA suits,” NASA noted. “The crewmen can take a sip of water from the 6 x 8-inch (15 x 20 cm) bag through a 1/8-inch (0.3 cm) tube within reach of his mouth.”

Returning back inside Aquarius after a minimum of four hours, and perhaps as long as five hours, the astronauts would have grabbed a bite to eat in the broom-cupboard-sized LM and struggled to catch some sleep. Their second EVA was scheduled to begin at 9:58 p.m. EDT on 16 April, and it would feature the first “real” scientific inspection of the Fra Mauro site. Their EVA-2 traverse was expected to cover 8,700 feet (2,650 meters), of which 4,500 feet (1,370 meters) was the outbound half and 4,200 feet (1,280 meters) was the inbound portion, back toward Aquarius. Two sampling stops on the hilly approach to Cone Crater would have allowed Lovell and Haise to gather rock and soil specimens, potentially from lava flow or Imbrium impact material, and they would have moved slowly uphill to reach the rim of the crater, some 400-600 feet (120-180 meters) above the neighboring terrain.

The planned traverses for Apollo 13's first EVA (red line) and second EVA (black line), together with extensions (yellow line). These excursions would have brought Jim Lovell and Fred Haise to the rim of Cone Crater. The explosion canceled all such plans. Photo Credit: NASA
The planned traverses for Apollo 13’s first EVA (red line) and second EVA (black line), together with extensions (yellow line). These excursions would have brought Jim Lovell and Fred Haise to the rim of Cone Crater. The explosion canceled all such plans. Photo Credit: NASA

“Almost the entire second EVA will be devoted to Field Geology Investigations and the collection of documental samples,” it was noted in the Apollo 13 Press Kit. “The sample locations will be carefully photographed before and after sampling. The astronauts will carefully describe the setting from which the sample is collected. In addition to specific tasks, the astronauts will be free to photograph and sample phenomena which they judge to be unusual, significant and interesting. The astronauts are provided with a package of detailed photo maps, which they will use for planning traverses. Photographs will be taken from the LM window. Each feature or family of features will be described, relating to features on the photo maps. Areas and features where photographs should be taken and representative samples collected will be marked on the maps. The crew and their ground support personnel will consider real-time deviation from the nominal plan, based upon an on-the-spot analysis of the actual situation.” Both Lovell and Haise would have carried a Lunar Surface Camera, which comprised a modified 70 mm electric Hasselblad.

The two men would put their geological training to good use in collecting several core tube samples, digging a 2-feet-deep (60 cm) trench to evaluate soil mechanics and gas dynamics and collecting a variety of rock samples. During the return journey to the LM, they would have paused at Flank Crater, dug a trench, gathered samples, and bored a 27-inch (68.5 cm) double core tube into the regolith at Weird Crater, before closing out EVA-2 with a soil mechanics sample. Their samples—of which about 95 pounds (43 kg) were planned to be loaded aboard Aquarius’ ascent stage for the return to lunar orbit—would include “core samples, individual rock samples and fine-grained fragments.” Moreover, Lovell and Haise were expected to use a Lunar Stereo Close-up Camera to image “small geological features that would be destroyed in any attempt to gather them for return to Earth.”

In his NASA Oral History, Haise reflected that he and Lovell and their backups—John Young and Charlie Duke—were the first Apollo crew to be extensively schooled by Dr. Lee Silver of California Institute of Technology, together with scientist-astronaut Jack Schmitt. In the months before launch, the prime and backup crews, Silver and Schmitt journeyed into the Orocopia Mountains of southern California, to develop their skills as lunar field geologists. “We would go through two or three exercises a day, using Polaroids in that timeframe, to record the events, and get debriefs from Lee, and discuss geology around a campfire till like 10 or 11 at night,” Haise remembered. “It was a real fast dose and startup of what was kind of the ritual that followed with many of the ensuing field trips, although it got refined in a higher way with equipment we used and more involvement with the back room people who were going to be there during the mission.”

Jim Lovell highlights the cramped nature of the Lunar Module (LM) Aquarius. This craft would have provided a home on the Moon for himself and Haise for 33.5 hours. Photo Credit: NASA
Jim Lovell highlights the cramped nature of the Lunar Module (LM) Aquarius. This craft would have provided a home on the Moon for himself and Haise for 33.5 hours. Photo Credit: NASA

Their lunar explorations concluded, Lovell and Haise would have lifted off from the Moon at 7:22 a.m. EDT on 17 April 1970, after 33.5 hours on the surface, and docked about 3.5 hours later with an undoubtedly very happy Jack Swigert aboard Odyssey. During their time apart, Swigert would have pursued his own program of Lunar Orbital Science, using a large-format Lunar Topographic Camera (LTC), known as the “Hycon.” It was a huge device, with an 18-inch (45.7-cm) lens that completely filled the window of the command module’s access hatch. Swigert would have acquired numerous high-resolution black-and-white images in overlapping sequences for use as mosaics or single frames. His key surface targets were candidate landing sites for subsequent Apollo missions, including Censorinus, the crater chain of Davy Rille and the Descartes highland site. So important was it that, after the return of Lovell and Haise, the crew were to spend another full day in lunar orbit using the Hycon and their other complement of cameras.

Barreling away from the Moon following the Trans-Earth Injection (TEI) burn at 1:42 p.m. EDT on 18 April, they were scheduled to splash down in the Pacific Ocean at 12:17 p.m. PDT (3:17 p.m. EDT) on the 21st, completing a mission of just over 10 full days. Although the Fra Mauro site was subsequently visited by the Apollo 14 crew in early 1971—thereby illustrating its significance to lunar science—it remains intensely disappointing that Jim Lovell and Fred Haise never had the opportunity to put their training and experience to the test on the Moon’s surface. It is equally disappointing that Jack Swigert lost his chance to perform exceptional lunar science from orbit. “The crewmen of Apollo 13 have spent more than five hours of formal crew training for each hour of the lunar landing mission’s ten-day duration,” NASA explained in the Press Kit. “More than 1,000 hours of training were in the Apollo 13 crew training syllabus over and above the normal preparations for the mission: technical briefings and reviews, pilot meetings and study.” Lovell and Haise also participated in 20 suited walk-throughs of their EVA activities, covering lunar geology and deployment of experiments, including the ALSEP.

Yet it must be borne in mind that, aside from the loss of a valued lunar landing mission, Lovell, Haise, and Swigert returned alive from arguably the most harrowing episode in America’s early exploration of the heavens. Against all the odds, they and a remarkable team of thousands on Earth tackled huge problems and overcame each one to snatch triumph from potential defeat. “The most frightening moment in this whole thing is when the explosion occurred and then—after a little period of time—saw the oxygen escaping and we didn’t have the solutions to get home,” Lovell told the NASA Oral History Project. “We knew we were in deep, deep trouble.”

For Apollo 13, the primary mission was lost, but in a remarkable feat of human ingenuity and courage, the mission morphed into something entirely new and continued. “I always compare this like a game of solitaire,” said Lovell. “You turn up a card, and that’s a crisis. If you can put it someplace, the mission keeps going.”
Chase Plane Captures SpaceX Rocket Landing Attempt After Successful CRS-6 Dragon Launch

Chase Plane Captures SpaceX Rocket Landing Attempt After Successful CRS-6 Dragon Launch

Chase Plane Captures SpaceX Rocket Landing Attempt After Successful CRS-6 Dragon Launch

The Falcon-9 CRS-6 first stage booster just before touching down on the company's offshore "Autonomous Spaceport Drone Ship". According to SpaceX leader Elon Musk, the rocket came down with excess lateral velocity, causing it to tip over post landing. Photo Credit: SpaceX via Twitter @ElonMusk

The Falcon-9 CRS-6 first stage booster just before touching down on the company’s offshore “Autonomous Spaceport Drone Ship.” According to SpaceX leader Elon Musk, the rocket came down with excess lateral velocity, causing it to tip over post landing. Photo Credit: SpaceX via Twitter @ElonMusk

Right now SpaceX’s CRS-6 Dragon cargo ship is en route to the International Space Station (ISS), aiming to deliver tons of fresh supplies, cargo, science experiments, and technology demonstrations to the Expedition 43 crew for NASA. The launch itself, although scrubbed on April 13 for unfavorable weather, took off beautifully this afternoon into mostly clear blue skies over Cape Canaveral, Fla., and although delivering Dragon and its payloads to the $100 billion orbiting science research outpost is the primary mission, SpaceX had another mission in mind as well: landing their rocket on an autonomous barge located a couple hundred miles offshore.

The Falcon-9 CRS-6 first stage booster just before touching down on the "ASDS. Photo Credit: SpaceX via Twitter @ElonMusk
The Falcon-9 CRS-6 first stage booster just before touching down on the “ASDS. Photo Credit: SpaceX via Twitter @ElonMusk

The barge, known as the “Autonomous Spaceport Drone Ship” (ASDS) and named “Just Read The Instructions,” was positioned around 250 miles offshore of the Florida/Georgia border. The attempt alone was only the second time SpaceX has tried landing their rocket on the ASDS (first try was on the CRS-5 mission), and although the rocket did not remain stable upon landing on the ASDS it did hit the ASDS. That feat in and of itself is worthy of respect, especially considering that stabilizing the 150-foot-tall rocket stage in flight—traveling at a velocity of 2,900 mph at separation—has been likened to someone balancing a rubber broomstick on their hand in the middle of a fierce wind storm.

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” said Elon Musk via his Twitter account (@ElonMusk) after launch. “Either not enough thrust to stabilize or a leg was damaged. Data review needed.”

“Looks like the issue was stiction in the biprop throttle valve, resulting in control system phase lag,” added Musk this evening. “Should be easy to fix.”

A couple images from the ASDS released today, courtesy of Musk, also show the booster just prior to impact on the barge.

The company is making strides with developing the technology to land their boosters and re-use them. When they do finally land a rocket successfully, it will be a history-making feat, a game-changer that many expect the company to accomplish this year. As is expected during any testing and development, the odds of success are only 50/50 currently, but the odds of success will dramatically increase as the vehicle matures through the next few landing attempts.

Never has a rocket made a controlled landing after a launch, and the expectation is that once the SpaceX Falcon-9 is truly reusable it will drive down dramatically both the costs of access to space and turnaround time between launches.

In the meantime, SpaceX is already beginning to build the actual landing site for their rockets, at the old Launch Complex-13 on Cape Canaveral Air Force Station, under a recently signed five-year lease agreement with the U.S. Air Force. Although instead of being called “Launch Complex-13,” it is now designated as “Landing Complex-1.” A primary concrete landing pad will be developed, surrounded by four smaller contingency landing pads for use in case a landing rocket is not quite on the bull’s eye.

The company is also planning similar operations at their west coast launch site at Vandenberg AFB, Calif. Another ASDS named “Of Course I Still Love You” will serve as the company’s Vandenberg barge while SpaceX continues on the reusability development path to landing their rockets back on solid ground.
Fourth SpaceX Falcon-9 in Four Months Roars to Space Station With Next Dragon Resupply Ship

Fourth SpaceX Falcon-9 in Four Months Roars to Space Station With Next Dragon Resupply Ship

Fourth SpaceX Falcon-9 in Four Months Roars to Space Station With Next Dragon Resupply Ship

Liftoff of the SpaceX Falcon-9 rocket to deliver the company's sixth dedicated Dragon resupply mission to the International Space Station on April 14, 2015 at 4:10 p.m. EDT from Cape Canaveral, Fla. Photo Credit: John Studwell / AmericaSpace
Liftoff of the SpaceX Falcon-9 rocket to deliver the company’s sixth dedicated Dragon resupply mission to the International Space Station on April 14, 2015, at 4:10 p.m. EDT from Cape Canaveral, Fla. Photo Credit: John Studwell / AmericaSpace

Following a 24-hour delay, caused by unacceptable weather conditions, SpaceX has successfully delivered its latest Dragon cargo mission into low-Earth orbit, carrying about 4,390 pounds (1,990 kg) of provisions, payloads, tools, and scientific equipment to the incumbent Expedition 43 crew of the International Space Station (ISS). Liftoff of the Falcon 9 v1.1 booster, flying for the 12th time in less than 19 months, took place during an “instantaneous” window at 4:10:41 p.m. EDT Tuesday, 14 April, from the storied Space Launch Complex (SLC)-40 at Cape Canaveral Air Force Station, Fla. At the time of writing, the CRS-6 Dragon—SpaceX’s sixth dedicated mission to the ISS, under the terms of its $1.6 billion Commercial Resupply Services (CRS) contract with NASA—had been successfully released into orbit from the second stage of the booster and is presently headed for a rendezvous and berthing at the Earth-facing (or “nadir”) port of the space station’s Harmony node early Thursday, 16 April.


The Falcon 9 v1.1 was transported to SLC-40 on Saturday, 11 April, for the standard Static Fire Test of the nine Merlin 1D engines on its first stage. “Static is complete,” SpaceX confirmed to AmericaSpace late Saturday afternoon. “Everything is looking good for Monday.” In fact, the primary violation for an on-time launch appeared to be the weather, which was reported by the 45th Weather Squadron at Patrick Air Force Base as 60 percent favorable during its update at 10 a.m. EDT Monday. “Summer-like weather continues across Central Florida,” it was noted. “Warm temperatures and afternoon thunderstorms are expected to continue for the next several days. Most thunderstorm activity will be inland today, as low-level winds are easterly along the Space Coast, helping to push the sea breeze inland quickly. However, with upper-level westerly winds, thunderstorms will tend to drift back toward the Spaceport late this afternoon, soon after T-0.” It was added that primary issues were the possible violation of the Anvil Cloud Rule and the Cumulus Cloud Rule.

SpaceX Falcon-9 taking flight with Dragon to the ISS on CRS-6. Photo Credit: Mike Killian / AmericaSpace
SpaceX Falcon-9 taking flight with Dragon to the ISS on CRS-6. Photo Credit: Mike Killian / AmericaSpace

Due to the nature of Dragon’s destination—the ISS—it was imperative that the launch must occur precisely on time. Unlike several other missions, there existed no margin to accommodate last-minute technical issues or poor weather conditions. If the vehicle could not launch on time, the attempt would be scrubbed and the countdown clock recycled to track a second opportunity on Tuesday afternoon. In spite of the 60 percent chance of acceptable conditions, SpaceX teams pressed ahead with Monday’s opening launch attempt and the Falcon 9 v1.1 was fueled with liquid oxygen and a highly refined form of rocket-grade kerosene, known as “RP-1.”

The cryogenic nature of the oxygen—whose liquid state exists within a range from -221.54 degrees Celsius (-368.77 degrees Fahrenheit) to -182.96 degrees Celsius (-297.33 degrees Fahrenheit)—required the fuel lines of the engines to be chilled, in order to avoid thermally shocking and potentially fracturing them. All propellants were fully loaded within one hour, and the vehicle’s tanks transitioned to “Topping Mode” shortly after 3 p.m. Shortly thereafter, the L-1 Hour Weather Briefing declared conditions to be “Green” (“Go”), although this remained tentative, in view of the changeable conditions. “The Falcon 9 weather criteria are all met, including the upper-level winds,” AmericaSpace’s Launch Tracker reported at 3:41 p.m. “There is a concern about a cell of anvil thunder clouds moving west to east, about 25 miles (40 km) from the pad. These seem to be dissipating, as they are heading east, but the Weather Officer is keeping an eye on them. A storm system that affected Titusville has moved away north of the Cape and is not an issue anymore.”

With the commencement of SpaceX’s live webcast, it was pointed out by Falcon 9 Product Director John Insprukter that the lightning and anvil clouds were “almost within constraint limits” and it was clear that the probability of launching on Monday hung on a knife-edge. At 4:20 p.m., the countdown reached its final “Go/No-Go” polling point of all stations at T-13 minutes. By this point, T-0 had been refined to 4:33:16 p.m., and after passing smoothly through each of the polls the Launch Director (LD) was able to issue a “Go” to press ahead with the Terminal Count at T-10 minutes. During this phase, the Merlin 1D engines were chilled, ahead of their ignition sequence. All external power utilities from the Ground Support Equipment (GSE) were disconnected and at 4:28 p.m., the roughly 90-second process of retracting the “strongback” from the vehicle got underway. It was confirmed as being fully retracted and ready for launch by 4:29:46 p.m.

Then, a “Hold! Hold! Hold!” call from a member of the launch team was called at T-3 minutes and 10 seconds. In view of the instantaneous nature of CRS-6’s window, it was immediately obvious that a scrub was unavoidable and the countdown clock halted at T-3 minutes and 7 seconds. As the strongback was elevated back alongside the vehicle, more details of the cause of the scrub emerged: a violation of the Anvil Cloud Rule. “The Launch Commit Criteria (LCC) violation was called due to a storm cell entering the 10-mile (16 km) limit,” noted AmericaSpace’s Launch Tracker, “which is attached directly via a storm system that contains lightning.”

With the clock recycled to track a backup opportunity at 4:10:41 p.m. EDT Tuesday, the forecast seemed gloomy, with just a 50-50 likelihood of acceptable conditions at T-0. “On Tuesday, the low-level flow turns more south-westerly and may impede the westward migration of the sea breeze,” noted the 45th Weather Squadron at Patrick Air Force Base in their Monday morning briefing. “This will keep the thunderstorm triggering mechanism much closer to the Spaceport, increasing the risk for Lightning, Cumulus Cloud and Anvil Cloud Rule violations.” Nevertheless, by the time the 45th issued an updated forecast at 9:00 a.m. EDT Tuesday, it had removed the Lightning risk element and enhanced the probability of acceptable weather conditions to 60 percent.

For the second time in as many days, SpaceX teams moved ahead with a satisfactory poll for fueling at 12:55 p.m. EDT Tuesday and by 2:40 p.m. all propellants had been fully loaded and the Falcon 9 v1.1 transitioned into “Topping Mode.” As the boiled-off liquid oxygen departed the vehicle and billowed away as a stream of white vapor, it was continuously replenished until close to T-0. “Weather is looking good right now,” AmericaSpace’s Launch Tracker pointed out at 3:28 p.m. EDT. “Unlike yesterday, there are no Anvil Storm Clouds anywhere near the 10-mile (16 km) restriction area and other criteria are looking good for launch time.” Yet with an instantaneous window, it was apparent that if the final polling point was not passed at T-13 minutes and if the Terminal Count did not commence at 4:00:41 p.m. EDT, Tuesday’s attempt would also be scrubbed.

Liftoff of SpaceX CRS-6 mission to the ISS for NASA. Photo Credit: John Studwell / AmericaSpace
Liftoff of SpaceX CRS-6 mission to the ISS for NASA. Photo Credit: John Studwell / AmericaSpace
With crystal blue skies and a few scattered wisps of cloud over the Cape, it seemed a good day for SpaceX to fly. The countdown passed perfectly through the final poll at T-13 minutes and into the Terminal Count. Again, the nine Merlin 1D engines were chilled, preparatory for ignition, and all external GSE utilities were disconnected. At 4:05:11 p.m., the process of retracting the strongback commenced and was complete within 90 seconds. Passing beyond the point of yesterday’s scrubbed attempt, the Flight Termination System (FTS)—which is tasked with destroying the rocket in the event of a major accident during ascent—was placed onto internal power and armed. By T-2 minutes and 15 seconds, the first stage’s propellant tanks had attained flight pressure, and at T-2 minutes the Range Operations Co-ordinator (ROC) confirmed Range clearance to support the launch. In this final phase, the Merlin 1D engines were purged with gaseous nitrogen and, at T-60 seconds, the SLC-40 complex’s “Niagara” deluge system of 53 nozzles were activated, flooding the pad surface and flame trench with 30,000 gallons (113,500 liters) of water, per minute, to suppress acoustic energy radiating from the engine exhausts.

At T-3 seconds, the nine Merlins roared to life, ramping up to a combined thrust of 1.3 million pounds (590,000 kg). Following computer-commanded health checks, the stack was released from SLC-40 at 4:10:41 p.m. EDT. Immediately after clearing the tower at T+10 seconds, the booster executed a combined pitch, roll, and yaw program maneuver to establish it onto the proper flight azimuth to inject the CRS-6 Dragon into low-Earth orbit. Eighty seconds into the uphill climb, the vehicle exceeded the speed of sound and experienced a period of maximum aerodynamic duress—colloquially dubbed “Max Q”—on its airframe. At about this time, the Merlin 1D Vacuum engine of the second stage underwent a chill-down protocol, ahead of its own ignition later in the ascent. At 4:13:11 p.m., 130 seconds after liftoff, two of the first-stage engines throttled back, under computer command, in order to reduce the rate of acceleration at the point of Main Engine Cutoff (MECO).

A "photography prohibited" sign displayed in this shot from the pad seconds after liftoff. Photo Credit: Mike Killian / AmericaSpace
A “photography prohibited” sign on the fence in this shot from the pad seconds after liftoff. Photo Credit: Mike Killian / AmericaSpace

Finally, at T+2 minutes and 58 seconds, the seven remaining engines shut down, and, a few seconds later, at 4:13:31 p.m., the first stage separated from the rapidly ascending stack. The turn then came for the restartable second stage, whose Merlin 1D Vacuum engine—with a maximum thrust of 180,000 pounds (81,600 kg)—ignited at 4:13:38 p.m. to continue the boost into orbit. Based upon previous Dragon missions, it burned for about six minutes and 45 seconds to inject the cargo ship into a “parking orbit.” During this period, the protective nose fairing, which covers Dragon’s berthing mechanism, was jettisoned.
Twelve minutes after departing the Cape, at 4:22:21 p.m., the sixth dedicated ISS-bound Dragon separated from the second stage and unfurled its two electricity-generating solar arrays, deployed its Guidance and Navigation Control (GNC) Bay Door to expose critical rendezvous sensors and began the intricate sequence of maneuvers to reach the ISS on Thursday, 16 April.

In the meantime, another mission had begun. Shortly after the separation of the Falcon 9 v1.1’s first stage, the initial steps to return the vehicle to a soft landing got underway. Its target was the Autonomous Spaceport Drone Ship (ASDS)—a 288-feet-long (87.8-meter) x 100-feet-wide (30.5-meter) Marmac 300 Freight Barge, equipped with diesel-powered azimuth thrusters, repurposed from oil rigs—positioned about 200 miles (320 km) out in the Atlantic Ocean, to the north-east of Cape Canaveral. This is part of SpaceX’s continuous effort to develop a fully reusable capability for its Falcon 9 v1.1 hardware. A previous attempt during the CRS-5 launch in January achieved partial success, for although the first stage reached the deck of the barge, a premature exhaustion of hydraulic fluid to the hypersonic grid fins caused it to impact at a 45-degree angle and exploded. Original plans for another attempt during the Deep Space Climate Observatory (DSCOVR) launch in February were called off due to rough sea conditions.

As described in a recent article by AmericaSpace’s Mike Killian, repairs were conducted and a planned series of upgrades to make the ASDS more stable in rough waters were announced as being underway by SpaceX founder Elon Musk. On Tuesday, 7 April, the two primary support vessels—the Elsbeth III, which draws the ASDS out to sea, and the Go Quest, which carries communications and tracking hardware—put to sea, reaching an approximate distance of about 10 miles (15 km) off Port of Jacksonville to evaluate improvements made in advance of the CRS-6 landing attempt. Following these tests, the Elsbeth III returned to port at 6:36 a.m. EDT on Wednesday, 8 April, ahead of its deployment for dedicated CRS-6 mission operations at 3:37 a.m. EDT Saturday, 11 April.

At the point of separation, the 150-foot-tall (46-meter) first stage was traveling at a velocity of about 2,900 mph (4,670 km/h) and maintaining stabilization has been likened to someone balancing a rubber broomstick on their hand, in the middle of a fierce windstorm. Three Merlin 1D engine firings were executed in order to steadily reduce this velocity and stabilize the first stage. An initial “Boost-Back” burn began at 4:18 p.m. EDT and served to adjust the vehicle’s impact point, pushing it “upward” and directing it back towards the Cape. Shortly afterwards, the FTS was deactivated.

Assisted by nitrogen thrusters, the first stage successfully flipped over and a “Supersonic Retro-Propulsion” burn slowed it to about 560 mph (900 km/h). A final “Landing” burn was intended to bring this velocity down still further to just 4.5 mph (7.2 km/h). The first stage will utilize compressed helium to deploy its four extendable landing legs and a quartet of lattice-like hypersonic grid fins—configured in an “X-wing” layout—were expected to be unfurled to control the lift vector. Coupled with engine gimbaling, these were designed to permit a precision touchdown on the ASDS surface. During January’s partial successful attempt to soft-land Falcon 9 v1.1 first-stage hardware, an exhaustion of hydraulic fluid to the grid fins was initially blamed for the “hard” touchdown. However, at 4:29 p.m. EDT, SpaceX founder Elon Musk tweeted: “Ascent successful. Dragon en-route to Space Station. Rocket landed on drone ship, but too hard for survival.”

The Falcon-9 CRS-6 first stage booster just before touching down on the company's offshore "Autonomous Spaceport Drone Ship". According to SpaceX leader Elon Musk, the rocket came down with excess lateral velocity, causing it to tip over post landing. Photo Credit: SpaceX via Twitter @ElonMusk
The Falcon-9 CRS-6 first stage booster just before touching down on the company’s offshore “Autonomous Spaceport Drone Ship”. According to SpaceX leader Elon Musk, the rocket came down with excess lateral velocity, causing it to tip over post landing. Photo Credit: SpaceX via Twitter @ElonMusk

CRS-6 is flying with its unpressurized “Trunk” empty of payloads, but will transport about 4,390 pounds (1,990 kg) of provisions, payloads, tools, and scientific equipment to the station’s incumbent Expedition 43 crew in its pressurized segment. That cargo consists of 1,100 pounds (500 kg) of crew supplies, including care packages from home, food and provisions, 1,140 pounds (518 kg) of miscellaneous items for the station’s Environmental Control and Life Support System (ECLSS) and Electrical Power System (EPS), 1,860 pounds (844 kg) of “Utilization” hardware—including U.S.-sponsored experiments and research payloads from the Canadian Space Agency (CSA), the Japan Aerospace Exploration Agency (JAXA), and the European Space Agency (ESA)—and about 79 pounds (36 kg) of command and data-handling equipment, TV and photographic gear, and EVA tools. According to NASA, the EVA tools include wire ties, one Fan Pump Separator (FPS), and a number of rechargeable battery assemblies for the U.S. Extravehicular Mobility Units (EMUs).

“We watched live!” tweeted Expedition 43 crew member Samantha Cristoforetti, after the successful launch. “Amazing to think that in 3 days #Dragon will be knocking at our door!” CRS-6 marks SpaceX’s fourth launch of the year, following hard on the heels of CRS-5 to low-Earth orbit on 10 January, DSCOVR toward the L2 Lagrange Point on 11 February and, most recently, the Eutelsat 115 West B and ABS-3A communications satellites to Geostationary Transfer Orbit (GTO) on 1 March. This make 2015 the first year in SpaceX’s history that it has delivered missions in as many as four consecutive months. Moreover, the mission fits into a manifest which should see as many as five Dragons flown in 2015, more than twice as many as has ever been achieved in any previous year. If these are executed according to schedule, CRS-6 will be followed by CRS-7 in June and CRS-9 in December, each of which will carry an International Docking Adapter (IDA) to support NASA’s Commercial Crew needs, whilst CRS-8 in September will deliver the Bigelow Expandable Activity Module (BEAM) to the station. To date, SpaceX has launched no more than two Dragons per year since its inaugural Commercial Orbital Transportation Services (COTS) test flight, back in May 2012, and if all goes well the company will complete 50 percent of its initial 12-flight CRS commitment to NASA when CRS-6 reaches the ISS and should reach 75-percent-complete by year’s end.
'To Come to California': Remembering Shuttle Columbia's Maiden Voyage

'To Come to California': Remembering Shuttle Columbia's Maiden Voyage

'To Come to California': Remembering Shuttle Columbia's Maiden Voyage

Columbia approaches touchdown at Edwards Air Force Base, Calif., 34 years ago today. Photo Credit: NASA
Columbia approaches touchdown at Edwards Air Force Base, Calif., 34 years ago today. Photo Credit: NASA

More than three decades have passed since the maiden voyage of the space shuttle. On 12 April 1981, orbiter Columbia rocketed away from Pad 39A at the Kennedy Space Center (KSC), kicking off a new era which would see more humans delivered into the heavens than at any other point in history. As described in a recent AmericaSpace commemorative article, the two-day mission of STS-1—crewed by Commander John Young and Pilot Bob Crippen—was one of the most hazardous spaceflights of all time, marking the first occasion on which a brand-new spacecraft had undertaken its very first orbital foray with humans aboard. There existed a very real risk that Young and Crippen might lose their lives, not only during launch and ascent, but also during Columbia’s hypersonic re-entry and desert landing at Edwards Air Force Base, Calif. That landing took place on 14 April 1981, exactly 34 years ago today, and was surrounded by almost as much drama as the launch itself.


Plunging into the “sensible” atmosphere at Mach 25, subjecting a patchwork of Thermal Protection System (TPS) tiles to extreme re-entry temperatures, and accomplishing an unpowered, “deadstick” touchdown at Edwards was a core requirement for the shuttle. Although the last few minutes, from passing subsonic velocity in the low atmosphere to the runway, had been exhaustively rehearsed during Enterprise Approach and Landing Tests (ALTs), the 45 minutes from the “de-orbit” burn of Columbia’s Orbital Maneuvering System (OMS) engines, through the searing furnace of re-entry and the complex series of aerodynamic turns needed to “bleed off” the craft’s speed and align her for touchdown, were largely unknown. To play things safe, NASA opted to use the wide expanse of dry lakebed at Edwards for the first four test flights.
This offered Young and Crippen a somewhat greater margin for error, although it was anticipated that when the shuttle became fully operational and its aerodynamic performance was better understood, precision landings on a narrower concrete runway at KSC would become the norm. Four hours before landing, at around 9 a.m. EDT on 14 April 1981, the two astronauts closed and latched Columbia’s payload bay doors for the final time.

STS-1 marked the first flight of the shuttle era and the first landing of a winged piloted orbital spacecraft in history. Photo Credit: NASA
STS-1 marked the first flight of the shuttle era and the first landing of a winged piloted orbital spacecraft in history. Photo Credit: NASA

Twenty minutes before the de-orbit burn, they oriented their craft tail-first and switched on two of the three Auxiliary Power Units (APUs). These were responsible for controlling the shuttle’s flight surfaces and hydraulics throughout re-entry. Fifty-three hours and 28 minutes after launch, passing over the Indian Ocean, the OMS engines ignited in the vacuum, slowing Columbia sufficiently to begin her perilous, high-speed glide to a landing strip on the opposite side of the planet. The 2.5-minute burn was reported with typical coolness by Young: “Burn went nominal.”

“Nice and easy does it, John,” replied Capcom Joe Allen from the Mission Control Center (MCC) at the Johnson Space Center (JSC) in Houston, Texas. “We are all riding with you.”

Minutes later, Columbia was turned around and her nose pitched “upward” at a 39-degree angle. Young and Crippen removed the safety pins from their ejection seats and the overhead escape hatches, then switched on the third APU. As the spacecraft entered the denser portion of the atmosphere, the tracking station on the island of Guam in the Central Pacific noted bursts of Columbia’s pulsing thrusters. Traveling at close to 16,000 mph (25,750 km/h), they hurtled onward and onward, as the color of ionized atmospheric gases morphed from a pale pink into a deeper pinkish-red, then reddish-orange, like a blast furnace.

As a tense world waited, the NASA Public Affairs Officer (PAO) reeled off a steady stream of updates. “We will be out of communication with Columbia for approximately 21 minutes,” he noted, making reference to the lengthier-than-normal period of radio blackout, caused by the accumulation of a plasma “sheath” around the orbiter. “No tracking stations before the West Coast … and there is a period of about 16 minutes of aerodynamic re-entry heating that communications are impossible … ” During this time, the Kuiper Airborne Observatory (KAO), flying almost directly beneath Columbia’s path, acquired an infrared image, revealing Columbia’s meteoric descent. The aircraft had earlier taken off from Hickam Air Force Base in Hawaii and established itself at an altitude of 44,880 feet (13,700 meters), about an hour before the spacecraft attained “Entry Interface.”

Columbia is approached by servicing vehicles after touchdown on the Edwards dry lakebed. Photo Credit: NASA
Columbia is approached by servicing vehicles after touchdown on the Edwards dry lakebed. Photo Credit: NASA

Descending lower now, the astronauts were, at length, able to receive Ultra-High Frequency (UHF) radio calls, crackling between Mission Control and one of the T-38 Talon chase aircraft which would accompany the shuttle down to the runway. “Hello, Houston,” Young called, “Columbia’s here! We’re doing Mach 10.3 at 188 [thousand feet].” For the majority of this period, except for the so-called “roll reversals”—a series of S-shaped curves to reduce speed—the computers were primarily responsible for flying the vehicle. Shortly after the orbiter crossed the California coastline, near Big Sur, Young took manual control. Long-range tracking cameras on Anderson Peak captured the first ground-based images of Columbia, flying at an altitude of more than 22 miles (35 km).

“What a way to come to California!” exulted Crippen.
Still traveling at well over four times the speed of sound, the shuttle passed over Bakersfield, Lake Isabella, and Mojave Airport, enabling the astronauts to verify by glancing through their windows that the ground track was “right on the money.” Young then executed a sweeping, 225-degree turn to align his ship with the dry lakebed Runway 23 at Edwards. Dropping to below 7.5 miles (12 km), he took Columbia’s stick and would later remark that control was crisp and precise.

Watching the arrival of America’s first space shuttle from orbit were tens of thousands of people, including Larry Eichel of the Philadelphia Inquirer. His testimony encapsulated the anxiety of everybody awaiting this historic event. “The shuttle appeared far above the north-east horizon,” he explained, “a white dot against a cloudless blue sky. That dot was dropping so fast that to an eye accustomed to watching the more gradual descent of commercial jets, it seemed inevitable that the shuttle would crash to the desert floor.”

As Columbia drew closer, her speed brake was gradually retracted and was fully closed by the time the vehicle was 2,000 feet (600 meters) above the runway. Falling precipitously, seven times steeper than a commercial airliner, and almost twice the speed, the reaction of Eichel that a crash was about to occur can, perhaps, be forgiven. It was at this point, however, that Young pulled back on the stick, lifted the nose, and transformed his ship, in a split second, from a falling brick into a graceful flying machine..

Servicing vehicles hook up cooling utilities to Columbia's aft compartment in the aftermath of the maiden landing of the shuttle. Photo Credit: NASA
Servicing vehicles hook up cooling utilities to Columbia’s aft compartment in the aftermath of the maiden landing of the shuttle. Photo Credit: NASA

Weather conditions in the California desert were near-perfect and surface winds were calm. At 10:20:35 a.m. PDT (or 1:20:35 p.m. EDT), Bob Crippen deployed the landing gear and all six wheels were down and locked into position within the 10-second time limit. Columbia touched down perfectly, 22 seconds later, at a speed of 212 mph (342 km/h), and rolled for almost 9,850 feet (3,000 meters), before coming to a smooth halt. The speed brake was opened and full-down elevons were applied, giving the astronauts an impression of considerable deceleration. “As it touched down,” recalled Eichel, “at a speed 80-90 miles an hour faster than a commercial airliner does, the rear wheels nestled into the hard-packed sand, kicking a rooster-tail high into the air.” The countdown to landing was echoed by both the public affairs spokesmen at Edwards and by the crew of one of the T-38s, who were first to welcome Young and Crippen back home with a resounding “Beautiful! Beautiful!”

Rookie astronaut John Creighton was aboard a U.S. Army helicopter at Edwards that day, and he later described the remarkable efforts of some spectators to get a close-up view of Columbia’s first return from orbit. “All kinds of people had camped out there for several days,” he told the NASA Oral History Project, years later. “There was a fence and there’d been a patrol to keep people back there. As soon as the shuttle rolled to a stop, these people charged forward, [this] fence went down and they got motorcycles and cars that went out racing. This was about five miles from where the shuttle actually landed and the only way you could see was with binoculars, but, boy, they wanted to get an up-front view! The security folks didn’t know what to do, so they told the helicopters to try to get this crowd under control, so these helicopters would swoop down in front of the on-charging group of cars. The helicopter pilots loved it. They were having a great time trying to head off all of these people!”

Post-landing analysis revealed that Columbia’s right-hand inboard brakes suffered higher-than-anticipated pressure, which caused a slight tug to the right, just before the wheels stopped. Young compensated for this by balancing the total braking to either side of the shuttle, maintaining a near-perfect course straight down the runway centerline, stopping at the intersection of Runways 23 and 15. One notable surprise was the sheer amount of lakebed debris—pebbles and grains of sand—kicked up by the wheels.
“Do I have to take it to the hangar, Joe?” quipped Young.

“We’re gonna dust it off first,” retorted Joe Allen with a chuckle.

An excited John Young stands with George Abbey, then-head of the Flight Crew Operations Directorate (FCOD), and watch Bob Crippen descend the steps from Columbia. Photo Credit: NASA
An excited John Young stands with George Abbey, then-head of the Flight Crew Operations Directorate (FCOD), and watches Bob Crippen descend the steps from Columbia. Photo Credit: NASA

Immediately after wheelstop, the astronauts unstrapped and began safing the OMS and Reaction Control System (RCS) switches before the arrival of the ground crew. When the latter arrived, they first hooked up sensitive “sniffer” devices to verify the absence of toxic or explosive gases and attached coolant and purging lines to Columbia’s aft compartment to air-condition her systems and payload bay and dissipate residual fumes.

Whilst this procedure was underway, the ground teams worked in Self-Contained Atmospheric Protection Ensemble (SCAPE) suits, then moved an airport-type stairway over to the hatch. Years later, Joe Allen would find it amusing to watch Young and Crippen, who looked like ordinary people as they came down the steps … surrounded by the ground team, whose cumbersome SCAPE suits made them look like the astronauts!

John Young, who had remained totally cool throughout re-entry, now let his excitement get the better of him. As soon as he got outside, about an hour after touchdown, he bounded down the steps, checked out the tires and landing gear, and jabbed the air triumphantly with both fists. He even kicked the tires, which scared the life out of the engineers, because they contained 375 psi of pressure. Combined with the hot brakes, there existed a real possibility that a tire might explode. Young, of course, could be forgiven. He was over-excited after completing the most audacious flying challenge of his career.
And it showed.

“I’ve often claimed that John calmed down” by the time he got outside, Bob Crippen said later, but noted with a twinkle in his eye: “You should’ve seen him when he was inside the cockpit!”
Expedition 30

Expedition 30

Exepdition 30















No.:12
Nation:
Surname: Burbank Ivanishin
Given names: Daniel Christopher Anatoli Alekseyevich
Position: ISS-CDR Flight Engineer
Spacecraft (Launch): Soyuz TMA-22 Soyuz TMA-22
Launch date: 14.11.2011 14.11.2011
Launchtime: 04:14 UTC 04:14 UTC
Spacecraft (Landing): Soyuz TMA-22 Soyuz TMA-22
Landingdate: 27.04.2012 27.04.2012
Landingtime: 11:45 UTC 11:45 UTC
Mission duration: 165d 07h 31m 165d 07h 31m
Orbits: 2580 2580
345
 Shkaplerov Kononenko Pettit
 Anton Nikolayevich Oleg Dmitriyevich Donald Roy
 Flight Engineer Flight Engineer Flight Engineer
 Soyuz TMA-22 Soyuz TMA-03M Soyuz TMA-03M
 14.11.2011 21.12.2011 21.12.2011
 04:14 UTC 13:16 UTC 13:16 UTC
 Soyuz TMA-22 Soyuz TMA-03M Soyuz TMA-03M
 27.04.2012 01.07.2012 01.07.2012
 11:45 UTC 08:14 UTC 08:14 UTC
 165d 07h 31m 192d 18h 58m 192d 18h 58m
 2580 3007 3007
6
 Kuipers
 André
 Flight Engineer
 Soyuz TMA-03M
 21.12.2011
 13:16 UTC
 Soyuz TMA-03M
 01.07.2012
 08:14 UTC
 192d 18h 58m
 3007

unofficial Backup Crew

No.:12
Nation:
Surname: Acaba Padalka
Given names: Joseph Michael Gennadi Ivanovich
Position: ISS-CDR Flight Engineer
345
 Revin Malenchenko Williams
 Sergei Nikolayevich Yuri Ivanovich Sunita Lyn "Suni"
 Flight Engineer Flight Engineer Flight Engineer
6
 Hoshide
 Akihiko
 Flight Engineer

 Launch from the Baikonur Cosmodrome (Oleg Kononenko, Donald Pettit and André Kuipers with Soyuz TMA-03M). Anton Shkaplerov, Anatoli Ivanishin and Daniel Burbank were onboard since November 16, 2011 (arrival with Soyuz TMA-22).

ISS Expedition 30 began with the undocking of spacecraft Soyuz TMA-02M on November 21, 2011 at 23:00 UTC. The former Expedition 29 (Sergei Volkov, Michael Fossum and Satoshi Furukawa) returned safely to Earth.

With the arrival of Soyuz TMA-03M on December 23, 2011 at 15:19 UTC the Expedition 30 became a six-person-crew. Soyuz TMA-03M carried Oleg Kononenko, Donald Pettit and André Kuipers to the space station.

On December 21, 2011, Expedition 30 Commander Daniel Burbank observed a pass of the comet C/2011 W3 Lovejoy. The comet was initially thought to be in a destructive orbit around the sun, and passed within 140,000 km (87,000 mi) of the sun's surface. However, the comet ultimately survived its encounter with the sun.

Progress M-14M was launched at 23:06 UTC on January 25, 2012. About 529 seconds after launch, the spacecraft separated from the Soyuz-U into a low Earth orbit with a target perigee of 193 kilometers (120 mi), apogee of 275 kilometers (171 mi) and 51.66 degrees of inclination. It spent a little over two days in free-flight, during which time it conducted two main engine burns and a firing of its maneuvering thrusters to raise its orbit before docking with the Pirs module of the International Space Station on January 28, 2012 at around 00:09 UTC; the docking port having been vacated by Progress M-13M on January 23, 2012.
Progress M-14M undocked on April 19, 2012 at 11:04 UTC from the Pirs Module, making way for Progress M-15M. Unlike most Progress departures, Progress M-14M spent additional time on orbit in order to carry out the "Radar-Progress" experiment, sounding the ionospheric environment as modified by thruster firings. The experiment was conducted by the Siberian Institute of Solar-Earth Physics of the Russian Academy of Science. The radar participating in the experiment is located in the Irkutsk region in southern Siberia. The Progress M-14M spacecraft was deorbited on April 28, 2012 at around 13:46 UTC and sank in the Pacific Ocean upon its reentry.

An EVA was performed by Oleg Kononenko and Anton Shkaplerov on February 16, 2012 (6h 15m). The tasks included: space crane Strela 1 relocation from DC1 to MRM2, using Strela 2, jettison MLI (Multi-Layer Insulation) cover, installing the Strela 1 on MRM2 (to aid future EVAs), stowing Strela 2 at DC1, installing the Vinoslivost Materials Sample Experiment on the DC1, taking a sample from the MLI insulation of the SM to look for any signs of living organisms and collecting one (of two planned) samples from the "Test" experiment.

On March 24, 2012 NASA’s Expedition 30 Commander Daniel Burbank and Russian cosmonauts Anton Shkaplerov and Anatoli Ivanishin entered their Soyuz TMA-22 spacecraft attached to the Poisk module on the space-facing side of the Zvezda service module, while cosmonaut Oleg Kononenko, NASA’s Donald Pettit and André Kuipers of the European Space Agency settled into their Soyuz TMA-03M spacecraft on the Earth-facing side of the Zarya module to wait for the debris to pass, after which they exited their respective spacecraft and resumed their normal duties. It is the third time in station history that a crew has had to shelter in their Soyuz return craft due to the possibility of a conjunction with orbital debris and the first since June 2011. The debris was initially tracked on March 23, 2012 morning, but the late notification to the flight control team of a possible conjunction between the debris and the station precluded planning for a maneuver to steer clear of the object which was predicted to pass about 23 kilometers from the complex at its closest approach on March 24, 2012

The Edoardo Amaldi ATV, or Automated Transfer Vehicle 003 (ATV-003), was a European unmanned cargo resupply spacecraft, named after the 20th-century Italian physicist Edoardo Amaldi. The spacecraft was launched by the European Space Agency (ESA) on March 23, 2012, on a mission to supply the International Space Station (ISS) with propellant, water, oxygen, and dry cargo. Edoardo Amaldi was the third ATV to be built, following Jules Verne (2008) and Johannes Kepler (2011). At the time of its launch, it was the world's largest single operational spacecraft, with a total launch mass of over 20 tons (44,000 lb).
The ATV docked with the ISS on March 28, 2012, five days after its launch. In addition to resupplying the Expedition 30 astronauts, Edoardo Amaldi used its thrusters to boost the station's altitude. The ATV was initially planned to undock from the ISS on September 25, 2012. However, a command program error during the undocking procedure delayed the release, and Edoardo Amaldi did not actually undock until 21:44 UTC on September 28, 2012. The spacecraft finally deorbited and performed a destructive re-entry over the Pacific Ocean on October 04, 2012, taking with it a payload of station waste.

Progress M-15M was launched on time at 12:50:24 UTC on April 20, 2012 from the Baikonur Cosmodrome in Kazakhstan. Ten minutes after liftoff, the Soyuz-U Rocket carrying Progress M-15M successfully delivered the spacecraft to orbit to begin its International Space Station (ISS) Resupply Mission. Progress M-15M was inserted into a 193.68 x 256.52 km x 51.63 deg. inclination orbit.
Five Maneuvers were conducted to refine the orbit of Progress M-15M before rendezvous operations started early on April 22, 2012. Progress M-15M docked with the ISS on April 22, 2012 at 14:39 UTC to the Pirs Docking Compartment Nadir Port. The port was vacated on April 19, 2012 by Progress M-14M. Fully automated rendezvous and docking operations using the Kurs docking system aboard the ISS and the Progress, drove the spacecraft to the linkup at orbital sunset. During the docking the ISS and Progress M-15M were orbiting 249 miles above northern China. Hooks and latches were engaged a few minutes after docking to firmly secure the spacecraft to the ISS.
On July 22, 2012, Progress M-15M undocked from the Pirs Docking Compartment and tried to perform a re-rendezvous two days later to test the new Kurs-NA navigation antenna. The undocking from the space station's Pirs compartment occurred around 20:27 UTC. The undocking occurred 255 miles over eastern Mongolia.
Progress M-15M was packed with 2,703 pounds of equipment, food, clothing, life support system gear ("dry" cargo), 1,988 pounds of propellant to replenish reservoirs that feed the Russian maneuvering thrusters, 926 pounds of water and some 110 pounds of oxygen and air. Among the cargo items inside the Progress, there was a special present for the Russian cosmonaut Gennady Padalka, who arrived at the ISS on May 15, 2012 and is expected to celebrate his 54th birthday in orbit on June 21, 2012.
Kurs is the system used by Progress spacecraft for automated rendezvous and docking with the space station. In addition to its current Kurs-A antennas, Progress M-15M was also fitted with a new antenna system known as Kurs-NA. The first Progress M-15M docking to the space station used the traditional Kurs-A. It was decided as such to ensure that Progress' cargo would not go wasted, should the new Kurs-NA system fail. Kurs-NA system is more power efficient than its predecessor, Kurs-A. It also replaces the function of five existing Kurs-A antennas into one antenna, thus allowing for the removal of four antennas from future Progress and Soyuz spacecraft. Getting rid of these antennas will reduce the risk of a docking failure as some are deployed post-launch and one is retracted prior to docking since it extends forward of the Progress docking interface.
The redocking was scheduled for 01:57 UTC on July 24, 2012. However it was aborted after equipment aboard the Progress spacecraft failed a self-test. The problem occurred at 01:23 UTC while the KURS-NA system was being activated. The issue forced the spacecraft into a passive abort mode as designed under safety protocols. At the time of the abort ISS and Progress were flying 9.3 miles apart. Two orbits after the abort, Russian flight controllers commanded the automated rendezvous system to re-activate for the collection of data. A second redocking attempt had to be delayed till July 28, 2012 to de-conflict with the arrival of the Japanese Kounotori 3 spacecraft at the ISS on July 27, 2012. A likely cause for the aborted rendezvous was pointed at lower than expected temperatures on Progress M-15M. As a solution to the issue, Russian engineers turned on all available heaters on the spacecraft, which kept Progress M-15M at a constant 22 degrees, which in turn resulted in Kurs-NA activating successfully, paving the way for the second docking attempt. When Kurs-NA was successfully activated at 23:00 UTC on July 28, 2012, it locked on to the passive Kurs-P on the Zvezda service module of the ISS. The re-rendezvous, fly-around and docking to the space station's Pirs compartment successfully occurred at around 01:00 UTC on July 29, 2012. During the time of the docking the ISS and the Progress was flying above the Earth to the west of New Guinea.
The Progress departed the space station for the second and final time on July 30, 2012 at 21:16 UTC.

Expedition 30 / 31 continued to expand the scope of research aboard the International Space Station now that assembly of the orbiting laboratory is complete.

As with prior expeditions, many investigations are designed to gather information about the effects of long-duration spaceflight on the human body, which will help us understand complicated processes such as immune systems with plans for future exploration missions. The investigations cover human research; biological and physical sciences; technology development; Earth observation; and education.

The Japan Aerospace Exploration Agency's Monitor of All-sky X-ray Image (MAXI) investigation will be finishing up its stay on the station. MAXI has been installed on the Exposed Facility (JEM EF) of the Japanese Kibo laboratory since Expedition 19/20, monitoring more than 1,000 X-ray sources in space once every 96 minutes using slit cameras, and has already produced significant results in the area of space science. In 2010, MAXI, along with the SWIFT spacecraft, found two new X-ray sources from its sky scans. Both instruments made the first observation of a relativistic (moving at a velocity approaching the speed of light) X-ray burst from a supermassive black hole destroying a star and creating a jet of X-rays.

The Commercial Generic Bioprocessing Apparatus Science Insert - 05 (CSI-05) Directional Plant Growth (also referred to as Plants in Space) investigation is continuing, comparing plant growth on the ground (by thousands of students in classrooms around the world) to plant growth in microgravity on board the station. Results from this investigation will continue to expand the knowledge base regarding how plants react in a microgravity environment, using this information to support longduration deep space missions providing food and oxygen generation. This also allows students to work essentially side-byside with scientists and astronauts.

Space radiation exposure is always a concern, and must be protected against. The European Space Agency's Dose Distribution Inside the International Space Station - 3D (DOSIS-3D) investigation will employ various active and passive radiation detector devices to assemble a threedimensional dose distribution map, of all segments of the station, to determine the radiation field parameters dose and dose equivalent to assist in assessing radiation safe exposure limits and exposure health risks. This investigation will provide important information regarding devices used for data collection and real-time data monitoring, proving valuable to commercial crews and military flight crews regarding radiation monitoring.

As part of U.S. National Laboratory activities on the station, Nanoracks modules provide autonomous, self-contained experiments that can be flown quickly and inexpensively by students, companies and other U.S. government agencies. Nanorack investigations during this timeframe will look at exploring the use of readily available commercial-off-the-shelf products and technologies (a smart phone and an electronic book) in microgravity, remote control mechanisms and mechanical devices, the behavior of 18S Ribosomal Ribonucleic Acid (RNA), and the MC3T3 mouse bone cell line, along with several student-based investigations.

Earth science is also on the list of topics that generates much interest, and there are many investigations involving this aspect. AuroraMax (simultaneous photography of the aurora borealis from the space station and ground-based observatories), Crew Earth Observations (CEO) (photography of natural and man-made surface changes), HREP-HICO (coastal imagery), and Geoflow-2 (studying heat and flow currents in the Earth's mantle to better understand and predict volcanic eruptions, plate tectonics and earthquakes) are all recording images, many never seen before.

The Burning and Suppression of Solids (BASS) investigation examines burning and extinction characteristics of a wide variety of fuel samples in microgravity. Results from this investigation will assist in devising strategies for extinguishing accidental fires in microgravity, along with contributing to advances in fire detection and suppression in microgravity and on Earth. Crew members will observe the burning process, noting flame shape (as a function of flow speed), flame spread rate, and flame dynamics, along with extinction data to be used for comparison to modeling data. A nitrogen suppressant system is used as the means for flame extinction.

Checkout and testing of hand motions for Robonaut 2, installed in the U.S. Destiny Laboratory, was planned for later this year.

Finally the station command changed from US astronaut Daniel Burbank to Russian cosmonaut Oleg Kononenko. With undocking of Soyuz TMA-22, carrying Anton Shkaplerov, Anatoli Ivanishin and Daniel Burbank on April 27, 2012 at 08:18 UTC the Expedition 30 concluded and the new ISS Expedition 31 began.

During the stay on board of the ISS the crews of Expeditions 29 / 30 carried out the following scientific experiments:
2D-NanoTemplate (Production of Two Dimensional NanoTemplate in Microgravity) ,
3DA1 Camcorder (Panasonic 3D Camera) ,
ALTEA-Dosi (Anomalous Long Term Effects in Astronauts' - Dosimetry),
ALTEA-GAP (Anomalous Long Term Effects in Astronauts' Central Nervous System-GAP),
ALTEA-Shield (Anomalous Long Term Effects in Astronauts' Central Nervous System - Shield),
AMS-02 (Alpha Magnetic Spectrometer - 02),
Actiwatch Spectrum (Actiwatch Spectrum System),
Alloy Semiconductor (Crystal Growth of Alloy Semiconductor Under Microgravity),
Amine Swingbed (Amine Swingbed),
Aquatic Habitat (Aquatic Habitat),
Area PADLES (Passive Dosimeter for Lifescience Experiment in Space),
AuroraMAX (Coordinated Aurora Photography from Earth and Space (AuroraMAX)),
BASS (Burning and Suppression of Solids),
BCAT-3-4-CP (Binary Colloidal Alloy Test - 3 and 4: Critical Point),
BCAT-4-Poly (Binodal Colloidal Aggregation Test - 4: Polydispersion),
BCAT-5-3D-Melt (Binary Colloidal Alloy Test - 5: Three-Dimensional Melt),
BCAT-5-PhaseSep (Binary Colloidal Alloy Test-5: Phase Separation),
BCAT-5-Seeded Growth (Binary Colloidal Alloy Test - 5: Seeded Growth),
BCAT-6-Colloidal Disks (Binary Colloidal Alloy Test - 6 - Colloidal Disks),
BCAT-6-PS-DNA (Binary Colloidal Alloy Test - 6: Polystyrene - Deoxyribonucleic Acid),
BCAT-6-Phase_Separation (Binary Colloidal Alloy Test - 6 - Phase Separation),
BCAT-6-Seeded Growth (Binary Colloidal Alloy Test - 6: Seeded Growth),
BioLab (Biological Experiment Laboratory),
Biological Rhythms (The Effect of Long-term Microgravity Exposure on Cardiac Autonomic Function by Analyzing 24-hours Electrocardiogram),
Bisphosphonates (Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss),
CCF (Capillary Channel Flow),
CEO (Crew Earth Observations),
CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System),
CFE-2 (Capillary Flow Experiment - 2),
CIR (Combustion Integrated Rack - Fluids and Combustion Facility),
COLBERT (Combined Operational Load Bearing External Resistance Treadmill),
CSI-05 (Commercial Generic Bioprocessing Apparatus Science Insert - 05: Spiders, Fruit Flies and Directional Plant Growth),
Card (Long Term Microgravity: A Model for Investigating Mechanisms of Heart Disease with New Portable Equipment),
CsPINs (Dynamism of Auxin Efflux Facilitators, CsPINs, Responsible for Gravity-regulated Growth and Development in Cucumber),
DECLIC-ALI (DEvice for the study of Critical LIquids and Crystallization - Alice Like Insert),
DECLIC-DSI (DEvice for the study of Critical LIquids and Crystallization - Directional Solidification Insert),
DECLIC-HTI (DEvice for the study of Critical LIquids and Crystallization - High Temperature Insert),
DOD-SPHERES-CSAC (Department of Defense Synchronized Position, Hold, Engage, Reorient, Experimental Satellites-Chip Scale Atomic Clock),
DTN (Disruption Tolerant Networking for Space Operations),
Dynamic Surf (Experimental Assessment of Dynamic Surface Deformation Effects in Transition to Oscillatory Thermo capillary Flow in Liquid Bridge of High Prandtl Number Fluid),
EDOS (Early Detection of Osteoporosis in Space),
EDR (European Drawer Rack),
EKE (Assessment of Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training),
EMCS (European Modular Cultivation System),
EPM (European Physiology Module),
EPO-Demos (Education Payload Operation - Demonstrations),
ERB-2 (Erasmus Recording Binocular - 2),
ESA-EPO (European Space Agency - Education Payload Operations),
ESA Nodding Mechanism (ESA Nodding Mechanism),
EXPRESS Racks (EXpedite the PRocessing of Experiments for Space Station Racks),
EarthKAM (Earth Knowledge Acquired by Middle School Students),
FIR (Fluids Integrated Rack - Fluids and Combustion Facility),
FLEX (Flame Extinguishment Experiment),
FLEX-2 (Flame Extinguishment Experiment - 2),
FSL (Fluid Science Laboratory),
Functional Task Test (Physiological Factors Contributing to Changes in Postflight Functional Performance),
GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator),
Geoflow-2 (Simulation of Geophysical Fluid Flow Under Microgravity - 2),
HET-Smartphone (Human Exploration Telerobotics Smartphone),
HREP-HICO (HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean),
HREP-RAIDS (HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (RAIDS)),
HRF-1 (Human Research Facility - 1),
HRF-2 (Human Research Facility - 2),
Hair (Biomedical Analyses of Human Hair Exposed to a Long-term Space Flight),
Hicari (Growth of Homogeneous SiGe Crystals in Microgravity by the TLZ Method),
ISERV (ISS SERVIR Environmental Research and Visualization System),
ISSAC (International Space Station Agricultural Camera),
ISS Ham Radio (International Space Station Ham Radio),
Ice Crystal 2 (Crystal growth mechanisms associated with the macromolecules adsorbed at a growing interface - Microgravity effect for self-oscillatory growth - 2),
Immuno (Neuroendocrine and Immune Responses in Humans During and After Long Term Stay at ISS),
InSPACE-3 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 3),
Integrated Cardiovascular (Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias),
Integrated Immune (Validation of Procedures for Monitoring Crewmember Immune Function),
JAXA-Commercial (Japan Aerospace Exploration Agency - Commercial Payload Program),
JAXA EPO 7 (Japan Aerospace Exploration Agency Education Payload Observation 7),
JAXA EPO 8 (Japan Aerospace Exploration Agency Education Payload Observation 8),
JAXA PCG (Japan Aerospace Exploration Agency Protein Crystal Growth),
Journals (Behavioral Issues Associated with isolation and Confinement: Review and Analysis of Astronaut Journals),
Kubik (Kubik),
LEGO Bricks (LEGO® Bricks, formerly known as NLO-Education-2),
MAMS (Microgravity Acceleration Measurement System),
MARES (Muscle Atrophy Research and Exercise System),
MAXI (Monitor of All-sky X-ray Image),
MCE (Multi-mission Consolidated Equipment),
MELFI (Minus Eighty-Degree Laboratory Freezer for ISS),
MERLIN (Microgravity Experiment Research Locker Incubator),
MFMG (Miscible Fluids in Microgravity),
MISSE-8 (Materials International Space Station Experiment - 8),
MSG (Microgravity Science Glovebox),
MSL-CETSOL and MICAST (Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions),
MSRR-1 (Materials Science Research Rack-1),
Marangoni-Exp (Chaos, Turbulence and its Transition Process in Marangoni Convection-Exp),
Myco-3 (Mycological Evaluation of Crew Exposure to ISS Ambient Air - 3),
NanoRacks-CubeLabs Platforms (NanoRacks-CubeLabs Platforms),
NanoRacks-E-Book (NanoRacks-Electronic-Book),
NanoRacks-FCA-Concrete Mixing (NanoRacks-Faith Christian Academy-Concrete Mixing Experiment),
NanoRacks-FCHS-Robot (NanoRacks-Fremont Christian High School-Mini-Robot),
NanoRacks-Fischer-18S-rRNA (NanoRacks-Fischer Institute of Air and Space-Footsteps of Creation and Origin of Life),
NanoRacks-Fischer-Bone (NanoRacks-Fischer Institute of Air and Space-Bone Study),
NanoRacks-Fischer-Early Development (NanoRacks-Fischer Institute of Air and Space-Early Development),
NanoRacks-Fischer-Milk (NanoRacks-Fischer Institute of Air and Space-Probiotic Milk),
NanoRacks-NanoKit-1 (NanoRacks-DreamUP!-Crystal Microplates-NanoKit-1),
NanoRacks-Smartphone-2 (NanoRacks-Smartphone-2),
NanoRacks-Terpene (NanoRacks-Terpene Extraction in Microgravity),
NanoRacks-VCHS-B. Sphaericus (NanoRacks-Valley Christian High School- Bacillus Sphaericus Bacteria Growth),
NanoRacks-VCHS-Electromagnetic Ferrofluid (NanoRacks-Valley Christian High School-Electromagnetic Effects on Ferrofluid),
NanoRacks-VCHS-Electroplating (NanoRacks-Valley Christian High School-Electroplating),
NanoRacks-VCHS-Plant Growth (NanoRacks-Valley Christian High School-Plant Growth),
NanoRacks-VCHS-To Be Selected (NanoRacks-Valley Christian High School-To Be Selected Experiment),
NanoRacks-WCHS-E. Coli and Kanamycin (NanoRacks-Whittier Christian High School-E.Coli Bacteria and Kanamycin Antibiotic),
NanoRacks Plate Reader (NanoRacks Plate Reader),
Nano Step (In-situ Observation of Growth Mechanisms of Protein Crystals and Their Perfection Under Microgravity),
Neurospat (Effect of Gravitational Context on EEG Dynamics: A Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration),
Nutrition (Nutritional Status Assessment),
Onboard Diagnostic Kit (Evaluation of Onboard Diagnostic Kit),
PACE-2 (Preliminary Advanced Colloids Experiment - 2: 3D Particle Test),
Particle Flux (Particle Flux Demonstrator),
Passages (Scaling Body-Related Actions in the Absence of Gravity),
Photosynth (Photosynth™ Three-Dimensional Modeling of ISS Interior and Exterior),
Pro K (Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery,
REBR (ReEntry Breakup Recorder),
ROALD-2 (ROle of Apoptosis in Lymphocyte Depression-2),
RRM (Robotic Refueling Mission),
Reaction Self Test (Psychomotor Vigilance Self Test on the International Space Station),
Repository (National Aeronautics and Space Administration Biological Specimen Repository),
Robonaut (Robonaut),
Ryutai (Ryutai Experiment Rack),
SAMS-II (Space Acceleration Measurement System-II),
SATS-Interact (Supervision of Autonomous and Teleoperated Satellites - Interact),
SCAN Testbed (Space Communications and Navigation Testbed),
SEDA-AP (Space Environment Data Acquisition Equipment - Attached Payload),
SLICE (Structure and Liftoff In Combustion Experiment),
SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder),
SNFM (Serial Network Flow Monitor),
SODI-Colloid-2 (SODI-Colloid-2),
SODI-DSC (Selectable Optical Diagnostics Instrument - Diffusion and Soret Coefficient),
SOLO (SOdium LOading in Microgravity),
SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites),
SPHERES-Zero-Robotics (Synchronized Position Hold, Engage, Reorient, Experimental Satellites-Zero-Robotics),
SS-HDTV (Super-Sensitive High Definition TV),
STP-H3-Canary (Space Test Program - Houston 3 - Canary),
STP-H3-DISC (Space Test Program - Houston 3 - Digital Imaging Star Camera),
STP-H3-MHTEX (Space Test Program - Houston 3 - Massive Heat Transfer Experiment),
STP-H3-VADER (Space Test Program - Houston 3 - Variable emissivity radiator Aerogel insulation blanket Dual zone thermal control Experiment suite for Responsive space),
Saibo (Saibo Experiment Rack),
Solar-SOLACES (Sun Monitoring on the External Payload Facility of Columbus - SOLar Auto-Calibrating EUV/UV Spectrophotometers),
Solar-SOLSPEC (Sun Monitoring on the External Payload Facility of Columbus -Sun Monitoring on the External Payload Facility of Columbus -SOLar SPECtral Irradiance Measurements),
SpaceDRUMS (Space Dynamically Responding Ultrasonic Matrix System),
Space Headaches (Space Headaches),
Spin (Validation of Centrifugation as a Countermeasure for Otolith Deconditioning During Spaceflight),
Sprint (Integrated Resistance and Aerobic Training Study),
TEM (Transport Environment Monitor Packages),
Thermolab (Thermoregulation in Humans During Long-Term Spaceflight),
Tomatosphere-III (Tomatosphere-III),
Treadmill Kinematics (Biomechanical Analysis of Treadmill Exercise on the International Space Station),
UMS (Urine Monitoring System),
Ultrasound 2 (Human Research Facility Ultrasound on the International Space Station 2),
VIABLE ISS (eValuatIon And monitoring of microBiofiLms insidE International Space Station),
VO2max (Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions),
Vascular (Cardiovascular Health Consequences of Long-Duration Space Flight),
Vessel ID System (Vessel ID System),
Vessel Imaging (Vascular Echography),
WORF (Window Observational Research Facility),
You Tube Space Lab (You Tube Space Lab).