During
the majority of the seven-day mission, Challenger operated in a gravity
gradient orientation, with her vertical stabilizer directed Earthward
and her starboard wing pointing in the direction of travel. Image
Credit: NASA, via Joachim Becker/SpaceFacts.de
For Gregory, his first launch proved exhilarating. “I was very excited,” he told the NASA Oral History Project. “I think I was probably anxious, but certainly not afraid. It was similar to the simulations, but they left out the 5 percent, and that was the ‘wow’! I remember the feeling inside when the main engines started; how it was almost a non-event. I could hear it and I was aware of it, but I looked out the window and saw the tower move back. At least that’s what I thought, but then I realized the orbiter was moving forward and then back, and when it came back to vertical, that’s when those solids ignited and there was no doubt about it: we were going to go someplace pretty fast! I just watched the tower kind of drop down below me and was probably laughing during this timeframe. Since we had trained constantly for failures, I anticipated failures and was somewhat disappointed that there were no failures. That was Challenger and she went uphill, just as sweet as advertised. The sensation of zero-G was like a moment on a roller coaster, when you go over the top and everything just floats. Once we got there, it was business as usual, just as we had practised and performed on the ground.”
For Overmyer, Gregory, and Thagard, the first order of business was pulsing their spacecraft’s twin Orbital Maneuvering System (OMS) engines to position themselves in a 225-mile (360-km) circular path. The orbit was inclined at 57 degrees to the equator to provide greater observation coverage for ATMOS. For Don Lind, the reality of actually traveling into space was surprisingly close to the training. “The simulations are spectacularly accurate,” he said later. “With the motion-based simulators, you even got some of the visceral sensations, because they can move the machine around and give you the sense of onset of zero-G. You can’t hold it indefinitely, but we had flown hundreds of parabolas in the KC-135 aircraft, so we were quite accustomed to those things.”
Challenger roars into orbit on 29 April 1985. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de
Following launch, the seven astronauts split into their respective 12-hour teams. Very soon, one of the two squirrel monkeys exhibited the same symptoms—lethargy and loss of appetite, but no vomiting—as humans for the first half of the mission, being hand-fed by Thagard and Thornton at one stage, before recovering completely for the final three days. The second monkey displayed no ill effects. The primates proved to be much less active in space than on Earth, although both they and the rodents grew and behaved normally, were free of chronic stress, and differed from their “controls” on Earth only by way of gravity-dependent variables. The monkeys, in particular, were spoiled, too.
“I think the environment they had come from was a place where they received a lot of attention,” said Gregory. “Norm and I would look into the Spacelab and see Bill Thornton attempting to get these monkeys to do things, like touch the little trigger that would release the food pellets. I could tell they expected Bill to do that for them, even though he was outside, looking in. We looked back one time and could see that the roles were kind of reversed and Bill was doing antics on the outside of the cage and the monkeys were watching!” Thornton and Thagard could view the primates through a window in each of their cages, while a perforated opening gave them limited access to the interior.
The
Spacelab-3 research module, pictured aboard Challenger’s payload bay
during Mission 51B. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de
On the ground, however, it became a big news story. “One anecdote involved this bit of animal dung that escaped from a cage and made its way from the Spacelab module to the flight deck,” Thagard told this author in a March 2006 email correspondence, referring to an object that floated past the commander’s nose. “Bob Overmyer made a comment about it that prompted an editorial page cartoon that appeared in some newspapers. The cartoon depicts a shuttle astronaut saying to a crewmate words to the effect of: I’m not upset, I’m just glad we didn’t have elephants on board!”
Aside from the RAHF tests, the main “operational” focus of Spacelab-3 was fluid physics and crystal growth. Taylor Wang operated his own drop dynamics experiment whilst Lodewijk van den Berg focused on the crystal growth. Eighteen hours into the mission, Overmyer and Gregory maneuvered the shuttle into her gravity-gradient attitude to support six days of fluid physics and crystal growth research.
Taylor
Wang’s legs emerge from the Drop Dynamics Module (DDM) as Bill Thornton
assists him with his experiment. Photo Credit: NASA, via Joachim
Becker/SpaceFacts.de
In his memoir, Riding Rockets, Mike Mullane did not specifically name Wang, but certainly made reference to the incident. “Its failure severely depressed him and he surrendered to episodes of crying,” Mullane wrote, “but this was just the beginning of his torture. He turned out to be a cleanliness freak. Living aboard the shuttle doesn’t leave its occupants feeling springtime fresh!” In the midst of this discomfort and upset, Wang asked Mission Control for permission to try to repair the DDM and when given the go-ahead he quickly got to work, opening the Spacelab rack, isolating the fault, and completely rewiring part of it. Several dramatic photographs, taken by his crewmates, showed Wang’s legs sticking out into the module as the DDM rack appeared to completely swallow his upper body. He had already threatened not to return home if NASA refused to allow him to fix the DDM, so it proved fortuitous that his bluff was not called.
“I hadn’t really figured out how not to come back,” Wang told a Smithsonian interviewer years later. “The Asian tradition of honorable suicide—seppuku—would have failed, since everything on the shuttle is designed for safety. The knife on board can’t even cut the bread. You could put your head in the oven, but it’s really just a food warmer. If you tried to hang yourself with no gravity, you’d just dangle there like an idiot!”
The patch for Mission 51B, emblazoned with the surnames of the seven-man crew. Image Credit: NASA
“I don’t think there was competition,” said Fred Gregory of the relationship between the silver and gold teams, “because the two shifts did two different kinds of science. Each shift had its own area of interest and would pick up any unclosed item from the shift preceding them, but would very quickly transition to the activities on orbit. There were really about four hours a day when there was an interaction between the two. During that time, it would just be a kind of status brief on orbiter problems or issues, any review of notes that had come up from Mission Control or some deviation to the anticipated checklist that we had.”
For Lind, the first Mormon astronaut, the gravity-gradient attitude provided a unique perspective of his home planet. “For the first two days of the flight, I did not take one single minute away from the timeline to just be a tourist,” he recalled, “but, on the third day, I had about ten or 15 minutes with no immediate assignment. I floated down to the flight deck. We were flying in an orientation with the tail always pointed toward the Earth and one wing always pointed forward in the velocity vector. That oriented the windows on the flight deck from the zenith to the nadir and from horizon to horizon, so it was like a Cinerama presentation. Both my wife and I are amateur oil painters. The sensation in space is that you are always right side up, no matter how you’re positioned. ‘Up’ and ‘down’ are just meaningless in space! Intellectually, you know you’re moving very fast, so that orbital velocity will cancel gravity, but the sensation is that you are stationary and the world is rotating majestically below you.”
The
crew of Mission 51B pose for the traditional in-flight portrait. From
left to right are Fred Gregory, Bob Overmyer, Don Lind, Norm Thagard,
Bill Thornton, Taylor Wang and Lodewijk van den Berg. Photo Credit:
NASA, via Joachim Becker/SpaceFacts.de
It has often been remarked on dual-shift Spacelab flights that the only times the entire crew really got together were shortly after launch and just prior to re-entry. “I think on that particular mission, it may have been anticipated that we would prepare a meal and everyone would eat at the same time,” said Gregory. “In reality, that’s not what actually happened. I called it ‘almost grazing’. You would go down and perhaps get a package of beefsteak and heat it and cut it open and eat it. You may stay on the middeck or you may go back up to the flight deck or you would go back into the laboratory and eat as you were doing your other routine duties.”
Their descent into Edwards Air Force Base, Calif., on 6 May 1985, proved to be among the most dramatic memories of the mission for Gregory. “Though it takes 8.5 minutes to get up to orbit,” he said, “it takes more than an hour to re-enter and it feels very similar to an airplane ride. You get an excellent view of the Earth. You’re going pretty fast, but you are not aware of it, because you’re so high. It’s an amazing vehicle, because you always know where you are in altitude and distance from your runway. You know you have a certain amount of energy and so you also know what velocity you’re supposed to land, and you watch this amazing vehicle calculate and then compensate and adjust as necessary to put you in a good position to land. We normally allow the automatic system to execute all the maneuvers for ascent and for re-entry, but as we slow down for landing, it is customary for the Commander to actually fly it in, using the typical airplane controls.”
Challenger touches down at Edwards Air Force Base, Calif., on 6 May 1985. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de
Quipped Norm Thagard in response: “Yeah, but the rest of us didn’t know you were doin’ that, or we’d have been more worried!”
After performing a graceful, 193-degree heading alignment circle turn, Overmyer guided the orbiter to a precision landing on Runway 17 at 9:11 a.m. PDT (12:11 p.m. EDT). Post-mission inspections of the shuttle revealed only superficial damage to her thermal protection tiles. However, following the loss of Challenger in January 1986, the Rogers Investigation would uncover worrisome signs that Mission 51B itself came close to disaster.
Post-flight examination of the twin Solid Rocket Boosters (SRBs) indicated erosion of the secondary O-ring seal and highlighted the failure of its primary seal. So serious was the incident—the seals were meant to prevent hot gas leakage from the structure of the boosters—that launch constraints were placed on several missions, later in 1985, but routinely waived.
“The first seal on our flight had been totally destroyed,” recalled Lind in his NASA Oral History, “and the [other] seal had 24 percent of its diameter burned away. All of that destruction happened in 600 milliseconds and what was left of that last O-ring, if it had not sealed the crack and stopped that outflow of gases—if it had not done that in the next 200 to 300 milliseconds—it would have gone. You’d never have stopped it and we’d have exploded. That was thought provoking! We thought that was significant in our family. I painted a picture of our liftoff, then two great celestial hands supporting the shuttle and the title of that picture is Three-Tenths of a Second. Each of [my] children have a copy of that painting, because we wanted the grandchildren to know that we think the Lord really protected Grandpa.